

Fontedit

. .22

.. 24
.27

Instructions
Program Listing
How It Works

Knotwork
Instructions . . .
Program Listing
How It Works

Interlacing Without Erasing
Knotwork By Hand .

Hacker's Delight
Useful Memory Locations

Loadfont
Subroutine to Load a Font

Oddments
Facts, Fancies and Rumors

The Oracle
Sees All, Knows All, Tells All

Novice Notes
About Bytes and Bits .

About IRIDIS Listings
How We Print the Unprintable

2
6
9

. 28

.36

.46

.49

· 51

· 52

· 56

IRIOIS 2
©1980 The Code Works"
All Rights Reserved

THECODE
WORKS

BOX 550
GOLETA, CALIFORNIA 93116
805-683-1585

Fontedit r=f)ntedit
Fontedit is a program which lets you design your own character sets (or fonts, as
the printers call them) for the Atari, The redesigning can range from merely
touching up the current characters to replacing everything with characters of your
own design (an APL character set, for example). Once designed, the character sets
can be saved for later use.
Some background is in order. The characters that you see on the screen of the
Atari are made up of small dots. The dots are arranged in an 8x8 square, for a
total of 64 dots. The characters are shown by making some of the dots visible, and
keeping the rest hidden. The characters don't appear to be made of dots because
the dots overlap, filling any holes that might have appeared. (Take a look at the
table on page 56 which shows how we print Atari's characters; the dot patterns all
show up clearly there.) What Fontedit does is let you change which dots can or
can't be seen for any given character. By changing the dot pattern, you can
change how the character looks. (Consider it electronic needlepoint, if you Iike.)
A further complication in the dot patterns is that some dots are green, and others
are purple. (That is, with a black background. Other color backgrounds produce
other color dots.) Specilically, four of the columns of dots are green, and the other
four are purple. The colors alternate across the character. If a green and a purple
dot touch, they combine into white. If you like, you use the colored dots to make
characters that are all one color or the other, or a mixture of both.
Whenever Fontedit is awaiting your direction, it shows a blinking on the
screen. The cursor shows where the computer's attention is on the screen. The
cursor blinks just to call your attention to it. You can move the cursor by pushing
the Joystick in the appropriate direction: push the joystick up to move the cursor
up; push it right to move the cursor to the right; and so forth. (The diagonals work,
too.) The cursor will keep moving until you let goof the joystick. If the cursor
goes off one side of the picture, it will reappear on the other side.
When the cursor is blinking, you can also give one of Fontedit's commands. Find the
key on the keyboard with the proper character on it (the character you see in the
menu), and press it. Fontedit is watching the keyboard at the same time it's
watching the joystick, so it responds to a keypress as quickly as it responds to the
joystick. (Note that you need only press the one key. You don't need to press
{CIRL} or {SHIFT} to give a command.)
To start, load Fontedit and type RUN. It will spend a little time setting up, and
then present you with a menu of commands, as well as several displays of characters.
The upper left display (an 8x8 square of dots) shows the character that you're
currently editing, but blown up, so you can easily see the individual dots making it
up. The solitary character to the right of the 8x8 square shows what the character
looks like alone. The 5x5 set of characters below that shows what the character
looks like repeated several times. Below the 8x8 square, the entire character set is
shown at once, so you can get a feel for how the various characters look together.
(The menu helps there, too.) When it starts up, Fontedit automatically "types" an
Edit command for you, as it has no way of knowing which character you want to
edit first.
Before you can edit a character, you must tell Fontedit that you want to edit that
character. To do that, you must give the Edit command. (Except when Fontedit first
starts up. Then it pretends that you gave one already.) When Fontedit is given the
Edit command, it moves the cursor from the 8x8 square into the character set. (In

2

the character set, the cursor is a blinking square.) Use the joystick to move the
cursor to the character you want to edit, and press the button. That character will
lie copied into the 8x8 square, and into the normal-sized samples beside the 8x8
square. The cursor is moved back to the ox8 square, and you can begin editing the
character using the joystick. If you change your mind about switching characters,
press any key (except {BREAK}) on the keyboard. The cursor will move back up to
the 8x8 square, and everything will be as if you had never given the Edit command.
(The key you press will IlQ.1. be taken as a conmand.)

When you change characters using Edit, the pattern that the Undo command
(described below) restores is changed. It becomes the current pattern for the
character you selected, as it is a.L,the time you select it. This is true even if you
don't move the cursor. The only way to prevent changing Undo's pattern is to abort
the Edit by pressing a key. Pressing a key to end Edit leaves things exactly as
they would be had you never given Edit at all.
Once you've selected a character to edit, the cursor moves back into the 8x8
square. In the square, you will see one of the dots blinking. The cursor is where
the blinking dot is. Use the joystick to move the cursor about the square. Once the
cursor is at a dot you want to change, press the joystick button. If the dot is
black, it will turn white; if it's white, it will turn black. By moving the cursor
around and pressing the button, you can produce any pattern you like. When the dot
pattern is the way you want it, just go off and do something else. \Vhile you're
changing the 8x8 square, Fontedit is making corresponding changes to the character
itself, so that what you see on the screen (in the two displays of the character to
the right of the 8x8 square) is always up to date.

Swrmary of Fontedit Commands

A Restore current character to Atari's pattern for it.
C Copy another Character's pattern into the current character's.
E Begin editing a different character's pattern.
F List the fonts saved on
L Loud a new font from disk or cassette.
Q Q.l.it Fontedit, leaving the edited font in use.
R Reverse black and white in the pattern.
S Save the current font onto disk or cassette.
U Undo OW changes made to a pattern since an Edit or a Load.
{CLEAR} fAake the pattern all black.
{UP} Roll the pattern up one row.
{OOlVN} Roll the pattern down one row.
{LEFT} Roll the pattern left one colwnn.
{RIGHT} Roll the pattern right one colwnn.

Joystick Move the cursor
Button Change the color of a dot, or

Select a character to Edit or Copy

3

Fontedit has a number of commands besides Edit and character editing:
Reyerse switches white and black throughout the pattern. All the white dots become
black, and all the black dots become white. (The command name comes from computer
parlance, in which we say that the character has been made "reverse video".)

(given by pressing the {CLEAR} key) makes all the dots in the current
character black, so that you can design your own character on a clean slate.
The four Roll commands (given by pressing the arrow keys) let you adjust the
position of the character in the 8x8 square. Roll Left moves every dot in the
character left by one dot's width. The dots that get pushed off the left side
reappear at the right. Roll Riiht is the same as Roll Left, except the dots move to
the right. Roll Up moves every dot up one dot's height. The dots that falloff the
top reappear at the bottom. Roll Down is the same as Roll Up, except that the dots
move down instead of up.
Finally, lets you make the character look just like another character. If you
like, you can leave it at that, or you can then modify the character. The technique
of copying characters can often save work when you're making a character that
looks a lot like another one (such as E and F).

After you press C, the cursor will move down into the character set, on top of the
character being edited. Move it to the character you want to copy using the
joystick, and press the button. That character's dot pattern will be copied into the
current Character's pattern. If you press a key on the keyboard instead of pressing
the joystick button, the copy won't be done, and the original pattern will remain
untouched. (The key you press will IlQi be taken as a command.) In either case, the
cursor moves back to the 8x8 square, and you can resume editing.
Occasionally, even the best of us make mistakes. Fontedit has two commands which
permit you to change your mind, and go back to an older version of the character.
l]nd.Q restores the dot pattern that the character had when you last Edited it, or
when a font was last Loaded, whichever was most recent. At..ar.i. changes the pattern
of the current character to the one that the Atari uses when you turn the computer
on. The Atari command affects 2D4t the current character. (Note that Undo will even
undo an Atari corrmand.)
When all the characters are as you want them (or if you are rudely interrupted at
your work), you can save the font in a file using the command. Save will ask
for a file name to save the font as. Type in an eight (or less) letter name. You may
give an extender if you like; Fontedit will use ".FNT' if you don't. If you have a
disk, Fontedit will save the font there; otherwise it will use the cassette. (If you
want to save to cassette when you have a disk, save to "C:".) When Fontedit is done
saving the font, it will say "SAVE COMPLETE", and let you go back to playing with
the font.
To get a font back again, use the 1&W1 command. Load works just like Save, except
that it copies a font into the Atari, instead of out of it. (As with Save, loading
from "C:" will make it read a cassette.) When it's done loading the font, it will say
"LOAD COMPLETE".
If you've forgotten what the name of your font is, fear not. Fonteditcan show you
what fonts you've saved on the disk. (Cassettes have no file names or directories, so
Fontedit can't help those of you without disks.) After you give the Font List
corrmand, Fontedit will ask you which disk drive you want to look on. Reply with a
number from 1 to 4. Fontedit will fill the area at the bottan of the screen with
font names. (It will only show you those fonts with an extender of ".FN'I". If you
have any with other extenders, they won't be shown, even if they are font files.)

4

When the screen is full, you will be told "PRESS RETURN FOR l\10RE". When you
press a key (not just {RETURN}, actually), the bottom of the screen will be filled
with more names of fonts. When all the font names have been shown, Fontedit will
tell you "PRESS RETURN 10 CONTINUE" editing. Again, any key will do. The bottom
of the screen will be erased, and you can go back to editing characters.
Sooner or later, you'll realize that other things must be done. (Fontedit is a
wonderful way to kill time; we speak from experience.) To leave Fontedit, give the
QW1 command, Fontedit will clear the screen, and give you back the normal Atari
cursor. Your modified font will be left in effect, so that anything printed will show
up in m characters. (Amaze your friends: list your program after you've loaded a
strang e font.)
After you leave Fontedit, several things can restore the normal Atari font instead of
yours. Some can be counteracted, a few require rerunning Fontedit, Naturally,
turning the Atari off wipes your font out of the machine (but not out of any files
it's saved in). Also, pressing {RESET} will make the Atari go back to its own font.
The only way to get back to your font is to rerun Fontedit, The Atari will also use
its own font after you enter (and leave) the OOS, or change graphics modes. In this
case, you can get your font back by typing

POKE 756, PEEK(106)+1
If you WANT the normal Atari font back again, pressing {RESET} is the simplest way
to get it. If you want to edit the normal font, press {RESET}, then type RUN.
A warning about split-screen windows used with private fonts: when the Atari scrolls
the text window, it scrolls 24 lines instead of just the four in the window. This
results in part of your font being scrolled. As a result, private fonts will work with
text windows only if the text window is scrolled. It seems that the people who
wrote the screen handler assumed that there would never be anything in memory
after the screen memory. As a result, they felt free to overwrite the "nonexistent"
memory after the screen. Unfortunately, the current font is kept after the screen
memory. It is therefore subject to the ravages of the screen handler. (Also, we
not have found all the ways that screen diddling can go past the end of the screen
internally. GRAPHICS 0 has worked quite reliably. Other graphics modes we don't
have much experience with.)
If you prefer the screen to be a color other than black, you can change it by
changing line 1060. Where it says 'SETCOLOR C2,CO,CO', change the first CO to the
number for the color you want. You can also change the second CO, to alter the
brightness of the screen. Black was chosen for the greatest contrast between dots
on and off.

Included with the programs in Iridis 2 are a few fonts that we have created.
FANCY.FNT is basically the normal Atari font. However, it has been made fancier and
has been generally spiffed up. (All that does not make it a 'has-been' Iont.)
Anything you can use FANCY for, you can use the normal Atari font for, but FANCY
looks better. (It is sometimes harder to read, due to the limitations of fitting each
character into an 8x8 square.)
KNaIWORK.FNT is a special-purpose font used by the Knotwork program. It contains
special characters that are used for making the knotwork patterns, instead of lower
case and graphics. It is an example of using a font for something other than letters
and text. KNaIWORK can be used only by the Knotwork program, but using it makes
the Knotwork program much simpler than it would have been otherwise.

5

COMPurER.FNT is a variant of the Computer typeface (which in turn was based on
the MICR numbers that appear on the botton of checks). The changes, as with
FANCY, were made fran constraints on fit (the 8x8 square again) or because we
thought some characters looked better the way we did them. You can use this one
to impress friends, or some such thing.

Fontedit Listing
REM FONTEDIT
REM COPYRIGHT(C) 1980 THE CODE WORKS
REM BOX 550, GOLETA, CA. 93017

3 REM ALL RIGHTS RESERVED
10 REM
90 GOSUB 30000
100 CO=0:Cl=1:C2=2:C4-4:C6=6:C7=7:C8=8
110 C9=9:C15=15:C18=18:C20=20:C23=23:C64=64
120 C96=96:C128=128:C255=255:C256=256
130 RAMTOP=106:ERRSAV=195:LOCK=702:CRSINH=752:CHBAS=756:KEYCODE=764:LMARG=82:

ATRACT=77:TOPSCR=88:HATABS=794
135 CONSOL=53279
140 ABORT=155:POKE LMARG,C2
200 DIM STATE(C7,C7) ,BIT(C7) ,PRISTINE(C7)
210 DIM CMD$(C23) ,DOT$(C4) ,FILE$(C20) ,C$(C18)
300 DOT$=" {CLEAR}_{BELL}":CMD$="ACEFLQRSU{CLEAR}<{UP DOWN LEFT RIGHT}-=+*_I\"'"
310 T=C128:FOR I=CO TO C7:BIT(I)=T:T=T/C2:NEXT I
320 HASDOS=CO
330 FOR I=CO TO 12
340 IF PEEK(HATABS+3*I)=ASC("D") THEN HASDOS=Cl
350 NEXT I
1000 POKE CHBAS,224:EOM=PEEK(RAMTOP)
1010 CHGEN=EOM*C256:T=C255-PEEK(CHGEN) :POKE CHGEN,T
1020 IF PEEK(CHGEN)=T THEN EOM=EOM+Cl:POKE CHGEN,C255-T:GOTO 1010
1030 EOM=EOM-C4:CHGEN=EOM*C256
1040 STD=(PEEK(1536) <>EOM) OR (PEEK(RAMTOP»=EOM)
1060 POKE RAMTOP,EOM-Cl:GRAPHICS CO:SETCOLOR C2,CO,CO
1070 IF STD=O THEN POKE CHBAS,PEEK(1536) :GOTO 1150
1080
1090 RESTORE 1400:N=CHGEN+125*C8:FOR I=CO TO C7:READ T:POKE N+I,T:NEXT I
1100 POKE EOM-Cl,CO
1150 POKE CHBAS,EOM
1160 POKE CRSINH,Cl
1170 FOR I=CO TO C7:FOR J=CO TO C7:POSITION I+C2,J:PRINT "{ESC CLEAR}"i:NEXT J:NEXT I
1200 POSITION C2,C9
1210 FOR I=CO TO C7:FOR J=CO TO ClS:PRINT "{ESC}"iCHR$(1*16+J)i:NEXT J:PRINT :NEXT I
1250 T=CO:RESTORE
1260 READ C$,FILE$:IF C$="" THEN 1500
1270 POSITION 27,T:PRINT C$i"l"iFILE$
1280 T=T+Cl:GOTO 1260
1300 DATA A,ATARI,C,COPY,E,EDIT,F,FONT LIST,L,LOAD FONT,Q,QUIT,R,REVERSE,S,SAVE FONT,U,UNDO
1310 DATA {ESC UP},ROLL UP, {ESC DOWN},ROLL DOWN
1320 DATA {ESC LEFT},ROLL LEFT, {ESC RIGHT},ROLL RIGHT,{4 LEFT}CLEAR,ALL DARK
1330 DATA {ESC} ,,{7 LEFT}JOYSTICK,TO MOVE,{5 LEFT}BUTTON,OFF{ESC LEFT ESC RIGHT}ON
1340 DATA ,
1400 DATA 0,0,0,24,24,0,0,0
1500 OLDSTICK=C15:STICKWAIT=CO:OLDTRIG=Cl
1510 R=CO:C=CO:LET ONOFF=Cl
1520 CHAR=ASC("@"):HOME=PEEK(TOPSCR)+C256*PEEK(TOPSCR+Cl)
1530 GOSUB 9100:GOSUB 9000
1540 FOR I=CO TO C7:PRISTINE(I)=PEEK(CURRENT+I):NEXT I
1550 GOTO 1900
1800 FOR I=Cl TO 1000:NEXT I
1810 POSITION CO,C23
1820 FOR I=C18 TO C23:PRINT "{DELETE-LINE UP}"i:NEXT I
1900 BLINKWAIT=CO
2000 RVS=STATE(R,C)
2010 T=STICK(CO) :IF T=C15 THEN OLDSTICK=T:GOTO 2300
2020 IF OLDSTICK<>C15 THEN STICKWAIT=STICKWAIT-Cl:IF STICKWAIT>CO THEN 2300
2030 OLDSTICK=T:STICKWAIT=3
2040 T=C2+RVS+RVS:POSITION C+C2,R:PRINT "{ESC}"iDOT$(T,T)
2050 POKE CONSOL,CO
2100 ON OLDSTICK+Cl GOSUB·2200,2200,2200,2200,2200,2240,2220,2230,2200,2260,2280,

2270,2200,2250,2210,2200

6

2110 IF R<CO THEN R=C7
2120 IF R>C7 THEN R=CO
2130 IF C<CO THEN C=C7
2140 IF C>C7 THEN C=CO
2150 LET ONOFF=Cl:BLINKWAIT=CO
2170 POKE ATRACT,CO:GOTO 2300
2200 RETURN
2210 R=R-Cl:RETURN
2220 R=R-Cl:C=C+Cl:RETURN
2230 C=C+Cl:RETURN
2240 R=R+Cl:C=C+Cl:RETURN
2250 R=R+Cl:RETURN
2260 R=R+Cl:C=C-Cl:RETURN
2270 C=C-Cl:RETURN
2280 R=R-Cl:C=C-Cl:RETURN
2300 T=STRIG(CO) :IF T=OLDTRIG THEN 2400
2310 OLDTRIG=T:IF T=Cl THEN 2400
2320 RVS=Cl-STATE(R,C):STATE(R,C)=RVS
2330 IF RVS=CO THEN POKE CURRENT+R,PEEK(CURRENT+R)-BIT(C):GOTO 2350
2340 POKE CURRENT+R,PEEK(CURRENT+R)+BIT(C)
2350 T=Cl+RVS+RVS+ONOFF:POSITION C+C2,R:PRINT "{ESC}"iDOT$(T,T)
2400 IF PEEK(KEYCODE)<>C255 THEN 3000
2410 BLINKWAIT=BLINKWAIT-Cl:IF BLINKWAIT>CO THEN 2000
2420 LET ONOFF=CI-0NOFF:RVS=STATE(R,C)
2430 T=Cl+RVS+RVS+ONOFF:POSITION C+C2,R:PRINT "{ESC}"iDOT$(T,T)
2440 BLINKWAIT=C6:GOTO 2000
3000 T=C2+RVS+RVS:POSITION C+C2,R:PRINT "{ESC}"iDOT$(T,T)
3010 GOSUB 9300:CMD=T
3050 IF CMD>C96 AND CMD<123 THEN CMD=CMD-32
3060 C$=CHR$(CMD)
3070 FOR I=Cl TO LEN(CMD$)
3080 IF CMD$(I,I)=C$ THEN 3100
3090 NEXT I:GOTO 2000
3100 IF 1<13 THEN ON I GOTO 4100,4000,3400,4800,4400,9900,3300,4200,3500,3200,3200,3600
3110 ON 1-12 GOTO 3700,3800,3900,3600,3700,3800,3900,3600,3700,3800,3900
3200 T=CHGEN+POSN:FOR I=CO TO C7:POKE T+I,CO:NEXT I
3210 GOSUB 9000:GOTO 2000
3300 FOR I=CO TO C7:POKE CURRENT+I,C255-PEEK(CURRENT+I):NEXT I
3310 GOSUB 9000:GOTO 2000
3400 GOSUB 8000:IF CH<CO THEN 2000
3420 CHAR=CH
3430 GOSUB 9100:GOSUB 9000
3440 FOR I=CO TO C7:PRISTINE(I)=PEEK(CURRENT+I):NEXT I
3450 R=CO:C=CO:GOTO 2000
3500 FOR I=CO TO C7:POKE CURRENT+I,PRISTINE(I):NEXT I
3510 GOSUB 9000:GOTO 2000
3600 T=PEEK(CURRENT)
3610 FOR I=CO TO C6:POKE CURRENT+I,PEEK(CURRENT+I+CI):NEXT I
3620 POKE CURRENT+C7,T
3630 GOSUB 9000:GOTO 2000
3700 T=PEEK(CURRENT+C7)
3710 FOR I=C6 TO CO STEP -Cl:POKE CURRENT+I+Cl,PEEK(CURRENT+I):NEXT I
3720 POKE CURRENT,T
3730 GOSUB 9000:GOTO 2000
3800 FOR I=CO TO C7
3810 T=PEEK(CURRENT+I)
3820 T=T*C2:IF T>C255 THEN T=T-C256+Cl
3830 POKE CURRENT+I,T:NEXT I
3840 GOSUB 9000:GOTO 2000
3900 FOR I=CO TO C7
3910 T=PEEK(CURRENT+I)
3920 T=T/C2:IF T<>INT(T) THEN T=INT(T)+CI28
3930 POKE CURRENT+I,T:NEXT I
3940 GOSUB 9000:GOTO 2000
4000 GOSUB 8000:IF CH<CO THEN 2000
4030 IF CH<C96 THEN CH=CH-32:IF CH<CO THEN CH=CH+C96
4040 T=CHGEN+CH*C8
4050 FOR I=CO TO C7:POKE CURRENT+I,PEEK(T+I):NEXT I
4060 GOSUB 9000:GOTO 2000
4100 T=224*C256+POSN
4110 FOR I=CO TO C7:POKE CURRENT+I,PEEK(T+I):NEXT I
4120 GOSUB 9000:GOTO 2000
4200 C$="NAME TO SAVE AS":GOSUB 4600:IF FILE$="" THEN 2000
4210 TRAP 4300
4220 OPEN #Cl,Ca,CO,FILE$
4230 PRINT" SAVING AS "iFILE$i
4240 FOR I=CHGEN TO CHGEN+I023
4250 T=PEEK(I):IF I>CHGEN+C7 THEN POKE I,C255-T

7

4260 PUT iC1,T:POKE I,T:NEXT "{DELETE-LINE} SAVE COMPLETE{BELL}";
4270 CLOSE iC1:GOSUB 9200:FOR I=C1 TO 150:NEXT I:PRINT "{DELETE-LINE}":GOTO 2000
4300 PRINT "{DELETE-LINE}CAN'T SAVE IN ";FILE$i"{BELL}":PRINT "ERROR ";PEEK(ERRSAV)
4310 CLOSE iC1:GOSUB 9200
4320 GOTO 1800
4400 C$="FONT TO LOAD FROM":GOSUB 4600:IF FILE$="" THEN 2000
4410 TRAP 4500
4420 OPEN iC1,C4,CO,FILE$
4430 PRINT" LOADING FROM ";FILE$;
4440 FOR I=CHGEN TO CHGEN+1023
4450 IF I>CHGEN+C7 THEN POKE I,C255-PEEK(I)
4460 GET iC1,T:POKE I,T:NEXT I:GOSUB 9000:POSITION CO,C20:

PRINT "{DELETE-LINE} LOAD COMPLETE{BELL}"i
4470 CLOSE iC1:GOSUB 9200:FOR I=C1 TO 150:NEXT I:PRINT "{DELETE-LINE}"
4480 FOR I=CO TO C7:PRISTINE(I)=PEEK(CURRENT+I):NEXT I:GOTO 2000
4500 PRINT "{DELETE-LINE}CAN'T LOAD FROM "iFILE$i"{BELL}":PRINT "ERROR "iPEEK(ERRSAV)
4510 CLOSE iC1:POKE EOM-C1,CO
4520 GOTO 1800
4600 T=PEEK(LOCK):POKE LOCK,C64
4610 POSITION C4,C20:PRINT C$;:INPUT C$
4620 PRINT "{UP DELETE-LINE}"i:POKE LOCK,T
4630 FILE$=C$:IF C$="" THEN RETURN
4640 FOR I=C1 TO LEN(C$)
4650 IF C$(I,I)=":" THEN 4700
4660 NEXT I
4670 FILE$="D:":IF HASDOS=CO THEN FILE$="C:"
4680 FILE$(3)=C$
4700 FOR I=C1 TO LEN(FILE$)
4710 IF FILE$(I,I)="." THEN RETURN
4720 NEXT I
4730 FILE$(LEN(FILE$)+C1)=".FNT"
4740 RETURN
4800 POSITION C4,C20:IF HASDOS=CO THEN PRINT "I CAN'T TELL WHAT'S ON THE CASSETTE.":GOTO 1800
4810 PRINT "WHICH DRIVE (1-4)?"i:GET iC7,T:PRINT "{DELETE-LINE}":IF T=ABORT THEN 2000
4820 T=T-ASC("O"):IF T<C1 OR T>C4 THEN POSITION C4,C20:PRINT "NO SUCH DRIVE. {BELL}":GOTO 1800
4830 FILE$="D?:*.FNT":FILE$(C2,C2)=CHR$(T+ASC("0"»
4840 TRAP 4850:0PEN iC1,C6,CO,FILE$:GOTO 4900
4850 POSITION C4,C20:PRINT "CAN'T READ DIRECTORY.":CLOSE iC1:GOTO 1800
4900 INPUT iC1,C$
4910 FOR I=C18 TO 21
4920 FOR J=C2 TO 29 STEP C9
4930 IF C$(C1,C1)<>" " THEN 5000
4940 POSITION J,I:PRINT C$(3,10)
4950 INPUT iC1,C$
4960 NEXT J:NEXT I
4965 IF C$(C1,C1)<>" " THEN 5000
4970 POSITION C8,C23:PRINT "PRESS FOR MORE"i:GET iC7,T
4980 FOR I=C23 TO C18 STEP -C1:POSITION CO,I:PRINT n{DELETE-LINE}"i:NEXT I
4990 GOTO 4910
5000 CLOSE IC1
5010 POSITION C6,C23:PRINT "PRESS TO CONTINUE"i
5020 GET IC7,T
5030 GOTO 1810
8000 OLDSTICK=C15:STICKWAIT=CO:BLINKWAIT=CO
8010 ROWSAVE=R:COLSAVE=C
8020 CH=CHAR:R=INT(CH/16) :C=CH-16*R
8040 POSITION C2,C20:PRINT "MOVE CURSOR WITH JOYSTICK"
8050 PRINT "PRESS BUTTON WHEN READY"
8100 T=STICK(CO):IF T=C15 THEN OLDSTICK=T:GOTO 8200
8110 IF OLDSTICK<>C15 THEN IF STICKWAIT>CO THEN STICKWAIT=STICKWAIT-C1:GOTO 8200
8120 STICKWAIT=C1:IF OLDSTICK=C15 THEN STICKWAIT=C4
8130 OLDSTICK=T:POKE CONSOL,CO
8135 POSITION C+C2,R+C9:PRINT n{ESC}";CHR$(CH)i
8140 ON T+C1 GOSUB 2200,2200,2200,2200,2200,2240,2220,2230,2200,2260,2280,2270,2200,2250,2210,2200
8150 IF R<CO THEN R=C7
8155 IF R>C7 THEN R=CO
8160 IF C<CO THEN C=C15
8165 IF C>C15 THEN C=CO
8170 CH=16*R+C
8180 BLINKWAIT=CO
8200 T=STRIG(CO):IF T=OLDTRIG THEN 8300
8210 OLDTRIG=T:IF T<>C1 THEN 8400
8300 IF PEEK(KEYCODE)<>C255 THEN 8400
8310 IF BLINKWAIT>CO THEN BLINKWAIT=BLINKWAIT-C1:GOTO 8100
8320 T=HOME+40*(R+C9)+C+C2
8330 POKE T,ASC(CHR$(PEEK(T}+C128»
8340 BLINKWAIT=C2:GOTO 8100
8400 POSITION C+C2,R+C9:PRINT "{ESC}"iCHR$(CH);

8

8410 R=ROWSAVE:C=COLSAVE
8420 T=PEEK(KEYCODE):IF T<>C255 THEN CH=-Cl:GOSUB 9300
8430 POSITION C4,C20:PRINT "{2 DELETE-LINE}":RETURN
9000 POSN=CHAR:IF POSN<C96 THEN POSN=POSN-32:IF POSN<CO THEN POSN=POSN+C96
9010 POSN=POSN*C8:CURRENT=CHGEN+POSN
9020 FOR I=CO TO C7:N=PEEK(CURRENT+I)
9030 POSITION C2,I
9040 FOR J=CO TO C7:RVS=CO:N=N+N
9050 IF N>C255 THEN RVS=Cl:N=N-C256
9060 STATE(I,J)=RVS:T=RVS+RVS+C2
9070 PRINT "{ESC}"iDOT$(T,T)i
9080 NEXT J:NEXT I:RETURN
9100 C$=CHR$(CHAR):POSITION C15,CO:PRINT "{ESC}"iC$
9110 FOR I=C2 TO C6:POSITION 13,1
9120 FOR J=Cl TO 5:PRINT "{ESC}"iC$i:NEXT J
9130 NEXT I
9140 RETURN
9200 I=LEN(FILE$):J=CHGEN-I-Cl
9210 FOR T=I TO Cl STEP -Cl
9220 N=ASC(FILE$(T)) :POKE J+T,N
9230 IF N=ASC(":") THEN RETURN
9240 NEXT T:RETURN
9300 T=PEEK(KEYCODE)
9310 IF T>=C128 THEN T=T-C128:REM ZAP CTRL
9320 IF T>=C64 THEN T=T-C64:REM ZAP SHIFT
9330 IF T=60 THEN POKE LOCK,PEEK(KEYCODE)-T:REM xxx-LOCK
9340 IF T=39 OR T=60 THEN POKE KEYCODE,28:REM RVS OR LOCK{RIGHT}ESC
9350 GET #C7,T:IF T>=C128 THEN T=T-C128
9360 RETURN
9900 PRINT "{CLEAR}":POKE CRSINH,CO:POKE LOCK,C64
9910 END
30000 DIM CR$(l) :CR$=CHR$(155):POKE 1536,PEEK(756):CO=0:C6=6
30010 GRAPHICS 2:0PEN #7,4,CO,"K:":POKE 752,1
30020 SETCOLOR CO,8,12:SETCOLOR 3,9,4:SETCOLOR 2,CO,CO
30030 PRINT #C6;CR$;CR$;CR$;CR$;
30040 PRINT #C6;" {12 C}"
30050 PRINT #C6;" {C} FONTEDIT {C}"
30060 PRINT #C6;" {12 C}"
30070 PRINT" COPYRIGHT (C) 1980"
30075 PRINT " THE CODE WORKS"
30080 PRINT "{DOWN} PRESS TO BEGIN.";
30090 GET #7,T:POKE 752,CO:CLR :GOTO 100

How Fontedit Works
Most of the code in Fontedit is concerned with three things: reading commands from
the user, maintaining the screen, and modifying the character generator.

Fontedit's use of memory deserves some comment: Fontedit grabs the highest four
pages of memory to hold the new character generator. Putting it there keeps it out
from underfoot of the Atari, Also, for reasons explained later, Fontedit must take
another page of memory just before the generator. Since we therefore have some
memory which is (largely) unused, we may as well put something useful into it. The
most useful thing for the program to save there is the name of the font that is in
the character generator. If Fontedit saves the name of the font, any program that
needs a special font (such as the Knotwork program) can look to see if the font it
needs is already there. If so, it doesn't need to load it, saving time and effort.

A note about the word font: In printer's terms, a font is a set of type (all the a's
and e's and dollar signs and so forth) of one particular style (e.g , Times Italic) in a
particular size (e.g , 12 points, or 1/6 inch). With the rise of computer-driven
typesetting, font is caning to mean simply a set of characters all in a certain
style. Since the computer can change the size of the type at the operator's whim,
type size is much less important. (With metal type, each size of type has to be made
separately. With a computer, the size is changed electronically, and there is just
one shape for all sizes.) Also, the computer sets type photographically, so there are
no actual metal type slugs being dealt with. We are using font with the new
meaning of 'character style', since it is convenient and meaningful.

9

=== Arrays ===
BIT() Each element of BIT() contains a power of two, from 1 to 128. It is

used to turn dots on and off in the character generator. (To turn a dot
on, we add the appropriate power of two. To turn it off, we subtracts)

PRISTINE() Holds a copy of the character pattern being edited, but from a time
before any changes were made to it. If we need to Undo those changes,
we just copy the character pattern back from PRISTINE(). PRISTINE() is
changed only by the Edit and Load commands.

STATE() Keeps track of which dots are on or off. STATEO is an 8x8 array
corresponding to the 8x8 square in the screen, with one item per dot.
Each item can hold either a 1, for a white dot, or a 0, for a black dot.
=== Variables ===

BLINKWAIT Tells how long we must wait before blinking the cursor again.
C Tells which column in the dot pattern the cursor is in.
CHAR Holds the ATASCII code for the character being edited.
CHGEN Holds the address of our character generator in memory. Also, briefly,

while setting up, it holds the address of the actual end of memory (as
opposed to where the Atari thinks it ends).

CMD Holds the ATASCII code for the command just entered from the
keyboard.

CMD$ Holds the character for the command just entered from the keyboard.
Tells where in memory the current character's dot pattern begins.

DOT$ Holds the characters needed to blink the cursor under both white and
black dots.

EOM Holds the number of the first page beyond the end of real memory. (A
page is a 256-byte chunk of memory. There are several circumstances
under which the 6502 can easily use only 256 bytes of memory around a
certain spot. Also, there are times when it is more convenient to figure
memory size in chunks bigger than a byte.)

FILE$ Holds the name of the file being opened for loading or saving a font. It
is also used as temporary storage in a few places.

HASOOS Notes whether or not the Atari knows how to talk to disks. If it
doesn't, Load and Save assume cassette. Also, Font List won't work at
all.

HOME
I, J
N

OLDSTICK

OLD'IRIG

ONOFF

Says where the top of the screen is in memory.
Used all over the place in FOR loops and such.
Holds numbers temporarily, when they don't need a variable of their own.
Tells what position the joystick was in the last time we looked at it.
That way we know if it has changed position since then.
Like OLDSTICK, but tells if the joystick trigg er (button) was pressed or
not.
Tells whether the cursor is on or off right now. Used to change it
properly when the time comes to blink the cursor.

10

POSN

R

RVS
SID

STICKWAIT

T

ABORT

ATRACT

Cnnn

CHBAS

CRSINH

ERRSAV

HATABS
KEYCODE
LMARG

LOCK

RAMTOP

TOPSCR

Tells how far from the start of the character generator the current
character's pattern starts.
Tells which row in the dot pattern the cursor is on.
Tells if the dot the cursor is on is white (1) or black (0).
While we're setting things up, STD says if we need to copy the standard
character generator into our generator.
Tells how long we have to wait before responding to the joystick again.
(We can respond to the joystick faster than the user can realize we've
responded, so we have to slow down to his speed.)
Like N; it holds a lot of things which are of just passing interest.
=== Constants ===
For a Font List, if the user presses the key Clffi$(ABORT), the listing is
stopped.
Points to the Attract Mode timer in memory. Every so often, we stuff a
zero in there to prevent Attract Mode from being turned on.
Any variable which is a C followed by a number is that number. (For
example, C1 is the same as just 1.) Those particular numbers are stored
in variables because they are used often enough that it takes less room
to keep them in a variable than it does to use them as numbers all
(Her.
Tells where in memory the Atari keeps the address of its character
generator. In the course of setting up, we have to tell the Atari that
our generator is the one to use. We tell it by changing the address
stored here.
Points to where the Atari keeps track of whether to display a cursor or
not. We tell it not to, as soon as possible.
Points to where the Atari stows the error number after a error has been
TRAPped.
Points to the Atari's list of known devices.
Points to where the Atari stores the keycode of a pressed key.
Points to where the Atari keeps the size of the left marg in of the
screen.
Points to where the Atari keeps track of whether or not the {CAPS} key
has been pressed.
Points to where the Atari keeps its idea of the size, in pages, of
memory.
Points to where the Atari remembers where screen memory starts.

===== The program =====
100-120

Set up names for frequently used numbers. Storing the numbers in variables,
instead of using them directly, makes the program smaller.

130 Give names to interesting locations in memory. The uses of the various
locations are explained elsewhere.

11

140 Choose which character will abort a Font List. Set the left marg in of the
screen to be two columns wide.

200-210
Allocate the arrays and strings.

300])()T$ is used in printing the big picture of the character currently being
edited. It contains dark and light squares, and dark and light squares with
little dots in them. The cursor blinks by alternating between squares with and
without little dots. (The dot was originally the {CLEAR} character, but Fontedit
changes it into the little dot while starting up.) CMD$ holds a list of all the
known cormands,

310 Set up BIT() to contain the powers of two. BIT() is used to turn on and off
single bits in memory.

320 Assume that this is a cassette-only system. We'll try to disprove that
assumption,

330-350
Search the Atari's known-devices list to see if there is a device named D: in
it. If there is, we'll assume it's a disk, and that this particular Atari has disks
attached.
Find (or make) room for a new character generator
(CHGEN plays a dual role in here: it first points to the actual end of memory,
and later points to where the character generator will Iive.)

1000 Make the Atari use its built-in character generator for a while. Find out where
the Atari thinks memory ends.

1010-1020
See if that is where memory ends. The check is quite simple: we find out
what's there, and put something else in its place. If what we put there stays,
there is writable memory there. In that case, we put back what we took out,
and try again, a little higher up (one page, to be exact).

1030 EOM and CHGEN now point to the actual end of memory. Put the new
character generator four pages back from the end of memory.

1040 Check if there's already a character generator there. If there is, some work is
saved, since we don't have to put one there. (If STD is non-zero, we must copy
in the standard one.) Location 1536 was set up by the framework (at line
30000) to be the address of the old character generator. (1536 is the first
byte of page 6 of memory. Atari swears they'll never use page 6.)

1060 We now reserve the memory we need for our new generator. An apparently
unneeded page of memory is also grabbed. In fact, the page is needed to
protect the generator against {CLEARls. The people who wrote the code that
clears the screen assumed that there would never be anything in memory after
the screen memory. On that assumption, they allowed a {CLEAR} to erase
memory after the end of the screen, as well as the screen itself. The
seemingly wasted page of memory gives them someplace harmless to clear.
(Also, we can use some of that page ourselves, as you will see later.) Next, we
issue a GRAPHICS 0, to force the screen memory out of our character
generator. Finally, we make the screen black again.

1070 If there's already a character generator available, make it the one the Atari
uses, and skip copying in the standard one.

12

1080 Copy the Atari's built-in character generator to the place where we're keeping
ours. Taken step-by-steps The string of "garbage" is actually a small piece of
machine language. The machine code copies 1024 bytes (four 'pages') of
memory from one place to another, rapidly. The ADR() function tells us
where the string (and therefore the machine code) is in memory, so we can use
it. The USR() function runs the machine code, and tells it to copy from the
Atari's generator (224*C256) into ours (CHGEN). The machine code itself
follows:
FRO
FROM
TO

212
FRO
FRO+2

;Handy page zero space
;Where to copy from
;Where to copy to

As this code will run anywhere, no
starting address will be given.

PLA
PLA
STA FROM+1
PLA
STA FROM
PLA
STA TO+1
PLA
STA TO

LDX 4/4
,
PAGE LDY 10

;Throw away number of arguments to USR()
;Get high byte of FROM address
; and save it
;Low byte of FROM address

;High byte of TO address

;Low byte of TO address

;Copy four pages of memory

;Set up to copy 256 bytes

BYTE LDA {FROM),Y ;Grab a byte
STA (TO),Y ; and stow it where it goes
INY ;Advance to next byte
BNE BYTE (assuming there is one)

INC FROM+1
INC TO+1
DEX
BNE PAGE

RTS

;Page copied. Advance to next page.
; (Advance both FROM and TO, together.)
;Knock another page off the count
;If any pages are left, copy 'em

;AII done. Go away.

1090 Change the {CLEAR} character to the small dot we use in the big picture.
1100 Note that the font in memory has no name.
1150 Make the Atari use our (possibly brand-new) character generator.
1160 Turn off the Atari's cursor (it's ugly, and we're going to supply our own).
1170 Print the 8x8 square of dots in preparation for the big picture of the

character being edited.
1200-1210

Print the entire character set on the screen. The {ESC} is printed to tame
things. like {UP} and {CLEAR} (which would otherwise do nasty things to the
display).

13

1250-1280
Put the command menu on the screen. Read a character and its description
from the DATA. If there was no character, we're done. Otherwise, print it, and
go back for more.

1300-1340
The data to be printed as the menu.

1400 Data that describes the small dot used in the big character picture.
The character generator has been set up.
It's time for other sundry preparations.

1500 The joystick was last seen straight up. The joystick trigger (button) was last
unpressed. There is be no delay in responding to the joystick.

1510 Put the cursor at row 0, column 0 of the character dot square. Make the
cursor dot be on. (It will go off as soon as we hit the cursor-blinking code.
We do this seemingly backwards because ONOFF says which way the cursor is
now. To force the cursor the way we want it, we pretend that the cursor is
the other way right now, and let the cursor-blinking code straighten things
out.)

1520 The character being edited is the at-sign, (It's gotta be somethio2', and that's
as good as anything.) Find the top of the screen in memory. We'll need to
know for the Copy and Edit commands.

1530 Print a few at-sig ns, and copy the dot pattern into the big square, so that
it's obvious where the dots are.

1540 Remember the current dot arrangement, so it can be restored (after changing)
if the user changes his mind.

1550 Skip the time-delay code.
Come here after an error message is printed.

1800 Kill some time, to let the user read the message.
1810-1820

Clear out the bottom of the screen, erasing the message. It is cleared from
the botton upwards. Were it from the top .down, the user would see the text
scroll up as the lines were deleted. That looks rather odd, so we go from
bottom to top.

1900 Make the cursor blink immediately.
===== Here starts the main loop of the program. =====

2000 Find out whether the dot at the cursor is on (RVS=l), or off (RVS=O).
2010 Look at the joystick, and see how it's being pushed. If it's straight up (1'=15),

remember that it was straight up, and go look at the button.
2020 If the stick wasn't upright the last time we looked, wait a little while. If we

should wait longer still, go look at the button intead of responding to the
joystick.

2030 We've waited long enough. It's time to respond to the joystick. Remember the
new position of the joystick, and arrange for another wait next time around.

2040 Restore the dot where the cursor is to what it was before we put the cursor
there.

2050 Make the built-in speaker click, to give a little audible feedback.
14

2100 The joystick can be in any of eight positions. Go off and do whatever's right
for the position it's in. Come back here when we're done.

2110 If the cursor went off the left edge of the square, put it at the right edge.
2120 Similarly, if it went off the right edge, put it at the left edge.
2130 If it went off the top, put it on the bottom,
2140 If it went off the bottan, put it on the top.
2150 Make the cursor seem to be on, so the cursor-blinking code will turn it off.

Arrange for the next blink to be inmediately.
2170 Since the user is clearly still there (he's playing with the joystick, after all),

turn off Attract Mode so that the screen will stay black. Go look at the
button.
Subroutines to mcwe the eursor, one per joystiek position.

2200 Joystick is upright or impossible. Do nothing.
2210 Joystick is pushed up. Move the cursor up one raw.
2220 Joystick is up and right. Move the cursor up and right one place.
2230 Joystick is pushed right. Move the cursor right one column.
2240 Joystick is down and right. Move the cursor down and right.
2250 Joystick is pushed down. Move the cursor down one row.
2260 Joystick is down and left. Move the cursor down and left.
2270 Joystick is pushed left. Move the cursor left one column.
2280 Joystick is up and left. Move the cursor up and left.

(All of this could have been done with arrays which were indexed by the
joystick position code. In this case, I decided to use a bunch of subroutines
instead, on the vague impression that the subroutines together take up less
room than the arrays and the code to fill then.)

2300 Look at the joystick button (or trigger). If it's in the same position as it was
last time we looked, ignore it.

2310 Remember its new position. If it's not pressed now, ignore it.
2320 It's time to repaint a dot. Change the dot under the cursor to the opposite of

what it is now (and remember it in RVS).
2330 If the dot was turned off, turn off the appropriate bit in the character

generator.
2340 If the dot was turned on, turn on the appropriate bit.
2350 Print a new dot on the screen, in the proper place.
2400 See if a key was pressed while we weren't looking. If one was, go off and do

sanething with it.
2410 Is it time to blink the cursor yet? If not, go off and start things aver by

looking at the joystick again.
2420 Turn the cursor off if it was on, and vice versa. Find out if the dot under the

cursor is light or dark.

15

2430 Select the proper character to print at the cursor location, depending on
whether the dot is on or off, and whether the cursor dot is to be there or
not. Print it at the right place.

2440 Wait a while before the cursor blinks again. Go look at the joystick again.
A key was pressed. Do what it says to do.

3000 Put the dot under the cursor back to normal (make sure the dot is visible).
3010 Go off and find out which key was pressed.
3050 If it was a lower case letter, make it upper case.
3060-3100

Search CMD$ for the pressed key. If it's not there, ignore it, and go look at
the joystick. If it is there, go off and do the appropriate thing.
{CLEAR} - Clear the current character to blank

3200 Store zeroes into all eight dot rows of the character.
3210 Redraw the big picture of the character, then go look for something else to

do.
R - Reverse the dots (switch light and dark) of the current character

3300 In the generator, wherever there is a 1 bit in the character picture, put a
zero there, and vice versa.

3310 Redraw the big picture, and start the main loop over.
E - Select a new character to edit

3400 Go off and let him select a character to edit. If he changed his mind (CH<O),
don't do anything.

3420 Note the new character being edited.
3430 Put the usual set of standard-sized characters on the screen (one alone, and

25 in a square). Put a big picture of the character in the 8x8 square of dots.
3440 Remember the starting dot arrangement, so the user can get it back if he

wants it.
3450 Put the cursor in the upper-left corner of the square, and start the main loop

over.
U - Undo any changes the user's made to the character

3500 Put the saved copy of the original arrangement back into the character
generator.

3510 Redraw the big picture of the character, and restart the main loop.
{Up} - Roll the dots making the character up one row

3600 Save the top row of the character against destruction.
3610 Move each of the other seven rows up one row.
3620 Put the saved top row back in as the new bottom row.
3630 Redraw the big picture of the character, and back to the main loop.

{DOWN} - Roll the dots of the character down one row.
3700 Save the current bottom row for later.

16

3710 Move each row down to the one below it. Note that the loop to do this runs
backwards, so to speak. If it went from 0 to 6, we would copy row 1 into row
2, and then row 2 (which is now the same as row 1) into row 3, then row 3
(which is now the same as row 2, which is the same as row 1) into row 4, and
so on. We would wind up with all the rows identical, rather than just moved.
Thus, we copy row 6 to row 7, then row 5 to row 6, and so on.

3720 Put the old bottom row in as the new top row.
3730 Redraw the big picture, and restart the main loop.

{LEFT} - Roll the dots of the character one column left
3800-3830

For each row of dots in the character, grab the row into T. Move all the dots
left by one dot, putting a black spot where the rightmost dot used to be. If a
dot was pushed off the left end, push it around to the right end, to where the
black spot was put before. Put the shifted row of dots back into where it
came from. Do the same thing to the other seven rows.

3840 Redraw the big picture, and go back to the main loop.
{RIGIfI'} - Roll the dots in the character right one place.

3900-3930
For each row of dots in the character, grab the row into T. Move the dots
right one place (by dividing by 2). If a dot went off the right end, (the old
row was an odd number, so the quotient has a fraction, and we must•••) move
the dot around to the left end of the row. Put the modified row back in place
of the old one. Do this for each of the other seven rows.

3940 Redraw the big picture, and restart the main loop.
C - Copy the dot pattern of another character into this one.

40PO Go off and let the user select a character to copy. If he changed his mind
(CH<O), don't do anything.

4030 Find the character's position in the character generator. (This code is
determined solely by the way Atari arranged the characters in the generator.
If I'd had my way, the ATASCII code would have sufficed.)

4040 Convert the position in the generator to a position in memory.
4050 Copy the dot pattern into the character being edited.
4060 Redraw the big picture, and go back to the main loop.

A - Restore Atari's dot pattern for the character
4100 Find out where the character's pattern is in the built-in generator.
4110 Copy the built-in pattern to the character being edited.
4120 Redraw the big picture, and return to the main loop.

S - Save the current font in a file
4200 Ask which file to save the font in. If he just presses {RETURN}, he changed

his mind, so just go back to the main loop.
4210 If anything goes wrong while we're saving, go to line 4300
4220 Open the file for writing.
4230 Say what we're doing.

17

4250-4260
Write out all of the character generator to the file. While that's happening"
move a small white line across the character array on the screen. The line
shows how much of the task has been done, and that we're doing something
useful, and haven't died. The line is made by switching the white and black
dots in the byte that's being written to disk. (While the blank character's
pattern is being written, the line is suppressed. Were it not, the line would
nash all aver the screen, which is somewhat disconcerting.) When we're done
with all that, say so.

4270 Close the file, and change the name of the loaded font. Kill some time to let
the user read the "SAVE COMPLETE" message. Erase the message, and return
to the main loop.

4300-4320
No luck saving the font. Say that it's impossible, close the file (in case we
died in the middle of saving it), change the name of the in-memory font
(despite the save not working), and return to the main loop.
L - Load a font from a file

4400 Ask the user what file to get the font from. If he presses {RETURN}, he'd
rather keep the current one, so leave it alone.

4410 If anything goes wrong while loading, go to line 4500
4420 Open (or at least attempt to open) his file.
4430 Say what we're doing.
4450-4460

Read in the new font, and stuff it away in the character generator. All the
while we're loading the new font, we move a little line across the character
array on the screen. It's the same line as for Save, for the same purpose, and
it's done the same way. When we're done, redraw the big picture of the
current character (since it may have changed on us when the new font was
Ioaded.) Also, print a messag e saying that the task is done.

4470 Close the file, and store the name of the newly-loaded font into where we
keep font names. Give the user some time to notice the "LOAD COMPLETE"
message. Erase the message, and go back to the main loop.

4500-4540
Say that we couldn't load the font completely. (Unfortunately, we can't restore
the font to what it was before the abortive Ioad.) Close the file, and say that
there is no font in memory (since we were so rudely interrupted). We do that
by making one of the characters in the font name (which is stored just before
the generator) be one that cannot occur in a real font name, by POKEing a
zero byte (or a D.Y.U) into the name. The Atari doesn't allow nulls in file names,
so they can't be part of font names, either.

4600-4670
Here we are going to get a file name, and make sure it has everything the
Atari likes file names to have.

4600 "Press" the {CAPS} button, so that the file name will be typed in using all
caps. Save the old position of the caps-lock, so we can restore it later.

4610 Print the proper question, as directed from above, and get a reply.
4620 Erase the question, and the reply. Restore the caps-lock to what it was before

we meddled with it.

18

4630 If he just pressed {RETURN}, we have nothing to do. Do just that.
4640-4660

See if there's a colon (and therefore a device) in the file name. If there is,
we don't need to assume a device.

4670 No colon in the file name, so there wasn't a device. Assume the disk, unless
there is no disk, in which case assume the cassette.

4700-4720
See if there's a period (and therefore an extender) in the file name. If there
is, all is well, and we're done.

4730 No extender. Tack on an extender of t'.FNT' (for FoNT) to keep font file names
separate fran others.

4740 All done. Hand the file name back to whoever it was that wanted it.
F - List the fonts saved on a disk

4800 See if there's a disk to lists the fonts on. If not, say so, and give up.
4810 Ask which drive we should look on, get the reply, and erase the whole mess. If

he pressed {RETURN}, he probably changed his mind (although he may have
assumed that {RETURN} gave him drive 1, a plausible, but wrong, assumption).
That being the case, go back to the main loop.

4820 Check the drive number he entered to see if it's legale If not, complain and do
nothing.

4830 Set up to read the directory of that drive.
4840-4850

Attempt to open the directory for reading. If it fails, say so, and forget he
ever wanted anything.

4900 Read a line from the directory. (Incidentally, the directory is given to the
program in exactly the same format as you see it using the DOS.) We read a
line before we enter the font-name-printing loop so that we are always a little
ahead of the printing. That way, we can tell if we've run out of names before
we have to decide which "PRESS RETURN" pranpt to print.

4910-4960
Fill lines 18 through 21 on the screen with four font names each. If we run
out of names before we run out of screen, go directly to the "CONTINUE"
message. Again, we read a name AFrER we print one so we will know that
we've run out of names before it's too late.

4965 The screen is full. Was it filled by the last font name in the directory? If so,
go off and print the "CONTINUE" message. It is for this question that we read
names the way we do. Suppose we read the names just before we printed them
(by doing INPur #1,C$:PRINT C$(3,10», instead of keeping one ahead as we
do. Also suppose that there are just enough fonts on the disk to fill the
'screen once (sixteen, as things are set up). When the screen is full, we will
have read all sixteen names from the directory, and there will be none left on
the disk, so we should print "PRESS RETURN '10 CONTINUE" instead of "PRESS
RETURN' FOR MORE" (since there are no more names). However, since we won't
yet know what the nex1 thing we will read is, we must assume it's another
name. The user is thus told that the names were all printed .l.as1 screenful,
after having been told that more names were caning. This unfortunate
occurence doesn't happen with Fontedit, because Fontedit always knows what
comes after the last name it printed on the screen, since it went and looked.
It therefore knows what it should do when the screen fills up.

19

4970 Say that there are more fonts lying in wait for him, and kill time till he
presses {REWRN} (or any other key, for that matter; why be picky?).

4980 Erase all the names we just finished printing. As with erasing error messages,
we do it bottan to top to avoid unsightly scrolling.

4990 Go off and print another sereenful,
5000 Close the directory; we're done with it.
5010-5030

Say we're done, and wait for him to finish perusing the font names. When he
says he's done, go back and let him do something else.
Select a character to Edit or Copy, with the joystick.

8000 Assume the joystick is straight up. Make an instant response when it moves,
and make the cursor blink inmediately.

8010 Remember where the pattern cursor is, so we can put it back in the right
place when we're done.

8020 Start with the cursor on the character being edited.
8040-8050

Say what the user should do to select a character.
8100 Peer at the joystick. If it's straight up, remember the fact, but don't do

anything about it.
8110 If the joystick wasn't straight up last time, either, wait a bit before

responding to it. This slows us down to the user's speed.
8120 Choose how long to wait before the next response to the joystick. (Thus, the

cursor starts slow, but moves fast once it gets started.)
8130 Remember what position the joystick is in now. Also, make the built-in speaker

click as audible feedback.
8135 Put the character under the cursor back to normal. (Make sure it's normal

video, and not reversed.)
8140 Move the cursor according to how the joystick's been pushed.
8150-8165

Keep the cursor within limits. Note that the limits are different from those on
the pattern cursor.

8170 Figure out which character the cursor is on.
8180 Make the cursor appear irrmediately.
8200 Look at the joystick button. If its position is unchanged, ignore it.
8210 The position has changed. Make a note of the new position. If it's pressed

now, the user's chosen a character, so hand it back.
8300 Look at the keyboard. If he pressed something, he doesn't want to select a

character after all, so hand nothing back.
8310 Nothing to do, so try to blink the cursor. If it isn't yet time to blink it, go

back and look at the joystick again.
8320 Time to blink it. Figure out where the cursor is in screen memory.

20

8330 Change it from normal to reverse video, or vice versa. The effect of the
ASC(CHR$(...» is to throw away any part of the number greater than 255; in
other words, ASC(CHR$(•••» returns the remainder of •••/256.
The reason we do a POKE to screen memory, instead of the usual POSITION
followed by PRINT, is that we need to be able to display a reverse video
{ESC}. If you try to print one, you'll get a carriage return, which is invisible.
By changing the screen with POKE, we bypass the Atari's printing routines,
and can get whatever we want on the screen. Were it not for that one single
thing, POSITION and PRINT would be used here, too.

8340 Schedule the next cursor blink, and go off to look at the joystick.
8400 A Character's been chosen! Change the character back to normal video.
8410 Restore the pattern cursor ag ain,
8420 If a key was pressed, return an invalid character, and go grab the key, so

that we get a keyclick.
8430 Erase the directions for character selection, and hand the character back.

Print the big picture of the character being edited
9000-9010

Figure out where the character is in the character generator. As with the
Copy command, the formula is used solely because it works. There's no arcane
theory behind it.

9020-9080
Grab one row of dots for the character from the character generator. Put the
cursor at the start of the proper line in the 8x8 square. To fill in the dots in
the row, we must do the following: For each column, shift the dot row left by
one (by adding it to itself). If a dot falls off the left end (if the result is
greater than 255), print a white spot in the column. Otherwise, print a black
spot. In either case, remember which kind of dot it was, so we can diddle it
later. When we've done all the rows and columns, we're done, so return to
whoever called us.
Print the sample characters beside the big pieture

9100 Print the character being edited all by itself beside the big picture.
9110-9130

Below it, print five rows of five of the character being edited, so that the
user can see how they look all run together.

9140 All done, so return.
Store the font name just in front of the character generator

9200 Find out how long the name is. Figure out where we have to put it so that it
will end just before the generator starts, so that name and generator touch.

9210-9240
Store the font name right up against the generator, storing the last letter
first, the next-to-last letter next, and so on. Stop after storing the colon for
the device. (We store the colon so that later, if we want, say, ''FIN.FNT', we
won't be fooled if "ELFIN.FNT' is loaded, since ":FIN.FNT' can't be confused
with ":ELFIN.FNT'.) When the name is saved, return to where we came fran.

21

Get a single keypress, even if it's {RVS} or {CAPS}
9300 Find out the keycode (not the ATASCII code) for the pressed key.
9310 If the {CTRL} key was pressed with it, pretend it wasn't.
9320 Likewise, if {SHIFf} was pressed with the key, pretend it wasn't.
9330 If the key pressed was the {CAPS} (or {LOWR}, same thing) key, change the

Atari's caps-lock setting for it. (We don't intend that the Atari ever see that
{CAPS} was pressed.)

9340 If the key pressed was either {CAPS} (whose keycode is 60) or {RVS} (with the
Atari logo on it; it's keycode is 39), pretend that it was really the {ESC} key
(keycode 28) that was pressed. This is because {CAPS} or {RVS} alone isn't
enough to make a GET statement return a value. The GET will sit there waiting
for some Q.thtt key to be pressed before letting the program continue. That
doesn't suit our plans, so we make GET think that {ESC} was pressed. (We could
just skip the GET completely for {CAPS} and {RVS}, but we want a key-click to
be heard, and we have to do a GET to get one. This is a subtle design point:
by making the key-click, we tell people that the key-press had its effect, even
though nothing visible happens.)

9350 Get the ATASCII code for the pressed key. (We could have worked with the
keycode, as we did for {RVS} and {CAPS}, but that isn't nearly as clear to the
reader. For {RVS} and {CAPS}, the keycode method is forced on us, since they
have no ATASCII code at all.) If it is reverse video, make it normal.

9360 Now that we have the key, hand it back.
Q - Quit the program

9900 Clear the screen, turn the Atart's cursor back on, make sure that the {CAPS}
button has been "pressed" (since the Atari doesn't like lower case comiands),

9910 Free at last!

Kno"fmoRk
Knotwork (or, more accurately, Celtic interlace) is a technique of
manuscript illumination used by the 7th and 8th century Irish monks.
In essence, a piece of knotwork is a drawing of interlaced cords.
(The example to the right is plain knotwork.) Were it left at that,
it wouldn't be very interesting. However, unadorned knotwork is
never found. What are called breaks are always added. A break is
basically a rerouting of the cords, so that they don't cross. By
putting breaks at judiciously chosen places, quite interesting -----.........-----
patterns can result. (The example to the left has a couple of breaks in it. Those
--..---------- alone are enough to make it noticeable different from the first

examples) The Knotwork program lets you try your hand at
constructing knotwork patterns. Or, rather, with constructing
patterns within a rectangle. The Irish monks also drew knotwork in
fancy shapes, and did it with things other than plain cords.
Unfortunately, those approaches are well beyond the capabilities of
the program. However, we hope the program will encourage some to

__--learn more about knotwork in particular, and calligraphy in general.

The Knotwork program uses a special font (or character set) to do its knotwork
with. When Knotwork starts up, it has to make sure that its font is loaded (either
by loading it, or finding out that the font is already loaded). It will then sit there
for a bit, setting up things, and then draw an unadorned knotwork pattern on the
screen. It is up to you to put in breaks where you want them.
It's important to remember that Knotwork IJlUS.1 have its special font in memory to do
anything more than print its name. If you're using cassette, you'll want to keep a
copy of the Knotwork font as the first file on a tape all its own. With disks, things
are simpler. You need only keep the Knotwork font (saved as "KNaIWORK.FNT') on
the same disk as the Knotwork program. (To keep the program simpler, Knotwork
assumes that its font is on drive 1, and will sulk if it Isn't.)
To put in breaks, you have to move the arrow (using the joystick) so that it points
to where you want the break. To put in the break in, press the joystick button. (If
you change your mind, push the button again, and Knotwork will take the break
out.)
Due to the arrangement of places that breaks can be put, the arrow's movement is
not completely straightforward. It alternates between pointing down and pointing
sideways. When pointing down, it points to the right-hand end of the (potential)
break; When pointing sideways, to the top of the break. Getting it positioned
correctly quickly is something that comes with practice. (Not a lot of practice,
fortunately.)
Sooner or later, you'll come up with a knotwork pattern that you want to save and
treasure. To do so, press S (for Save). The Knotwork program will ask what name you
want to save the pattern as. Type in a name that is from one to eight letters long,
and press {RETURN}. You'll then see a phantom spot moving across the pattern,
copying it into the file. When the spot has crossed the entire pattern, the pattern
has been saved. The arrow will reappear, and you can continue doing knotwork. (If
you don't have a disk, Knotwork will merely ask if your cassette drive is ready. No
name will be needed, nor asked for. As always with cassette, after you hear the two
buzzes, you'll have to press PLAY and RECORD on the recorder, and then press
{RETURN} to let the Atari proceeds)
Later, when your friends are around, you can reload the pattern by pressing L (for
Load). When asked for a name, type in the same name you gave when saving the
pattern, and then press {RETURN}. The same phantom spot will reappear, putting the
saved pattern back up again. As before, when it's done the whole pattern, the arrow
will reappear, and you can admire it or change it, as you please. (As with Save, a
name is asked for only if you have a disk. Otherwise, Knotwork just asks if the
cassette drive is ready, and waits for a {RETURN} after PLAY has been pressed.)
If you want to start over without any breaks set in the pattern, press the {CLEAR}
key. Whatever pattern you have drawn will be erased (by the same phantom spot as
for Load and Save).
Finally, when you tire of creating knotwork patterns, press Q (for Quit), and
Knotwork will release you to other tasks.

==
For those of you who becane interested, we are including an article "Interlacing
without Erasing," which contains directions on how to do knotwork yourself, without
aid of the computer. The design of the program, in fact, was inspired by the
techniques described in that article. (The secret of doing knotwork was lost for
many centuries, along with most of the rest of the art of calligraphy. It was

23

rediscovered in the mid-twentieth century by studying old manuscripts which hadn't
been completed, or in which mistakes had been made.) The directions are provided
courtesy of Melinda Sherbring and the Society for Creative Anachronism, Inc. (the
SCA).
The SCA is a non-profit educational org anization that fosters study of medieval life
and culture by recreating it. The SCA is a learn-by-doing group that encourages
members to adopt a persona of the period. This includes devising a unique name and
coat-of-srmsi attending events dressed in garb of one's chosen time, place, and
profession; and behaving in an honorable and chivalrous manner. The interlacing
article is an outgrowth of an workshop on calligraphy and
illumination. It was written by Mistress Eowyn Amberdrake, the Magistra Scriptoriurn
of Caid (head of the College of Scribes in Southern California). Mistress Amberdrake
is known to those outside the OCA as Melinda Sherbring, a software engineer for
1RW, Inc. in Redondo Beach, ca. For further information on the OCA, contact the
Office of the Registry, P.O. Box 594, Concord, Ca. 94522.

Knotwork Listing
o REM KNOTWORK
1 REM COPYRIGHT(C} 1980 THE CODE WORKS
2 REM BOX 550, GOLETA, CA. 93017
3 REM ALL RIGHTS RESERVED
10 REM
90 GOSUB 30000
100 CO=0:Cl=1:C2=2:C4=4:C6=6:C15=15:C16=16:C64=64
110 HORIZ=Cl :VERT=CO: SCREENWIO'l'H=40
120 HEIGHT=22:WIOTH=36
140 GOSUB 4900
200 BREAKSSIZE=(HEIGHT+C2)*SCREENWIDTH
210 DIM BITS(C4,C2) , ROWCHANGE (CIS) ,COLCHANGE(C15)
220 DIM BREAKS$(BREAKSSIZE) ,CHSET$(128) ,COOE$(60) ,MISC$(20) ,FILE$(20)
230 BREAKS=AOR(BREAKS$)
300 P=ADR(COOE$)
310 BITXOR=P:GOSUB 9100
320 BITANO=P:GOSUB 9100
330 BITOR=P:GOSUB 9100
340 DATA 68,68,85,05,68,85,04,68,45
350 DATA 05,85,05,68,45,04,85,04,60,=
360 DATA 68,68,85,05,68,85,04,68,25
370 DATA 05,85,05,68,25,04,85,04,60,=
380 DATA 68,68,85,05,68,85,04,68,05
390 DATA 05,85,05,68,05,04,85,04,60,=
410 FOR I=CO TO C15:REAO R:ROWCHANGE(I)=R:NEXT I
420 FOR I=CO TO C15:REAO C:COLCHANGE(I)=C:NEXT I
430 DATA 0,0,0,0, 0,1,-1,0, 0,1,-1,0, 0,1,-1,0
440 DATA 0,0,0,0, 0,1,1,1, 0,-1,-1,-1, 0,0,0,0
800 CHSET$(Cl)="dcbaihihmmkknnnn"
805 CHSET$(17)="qqqqrrrruuuuxxxx"
810 CHSET$(33)="poootssswvvvyxxx"
815 CHSET$(49)="gefajhjhl1kknnnn"
820 CHSET$(65)=" {4 O} {4 O}"
825 CHSET$(81)=" {4 C} {4 C}"
830 CHSET$(97)=" {8 B}"
835 CIISET$(113)=" {8 A}"
850 FOR I=CO TO Cl:FOR J=CO TO 3
860 READ T:BITS(J,I)=T
870 NEXT J:NEXT I
880 DATA 1,4,1,4, 2,2,8,8
900 GRAPHICS CO:POKE 752,Cl:POKE 82,CO:POKE 756,PEEK(106)+Cl
910 SETCOLOR C2,CO,CO
1000 POSITION CO,CO:PRINT "ONE MOMENT, PLEASE.":
1100 FOR I=CO TO BREAKSSIZE-Cl STEP 80
1110 FOR J=Cl TO 39 STEP C2
1120 BREAKS$(I+J)="{, p}"
1130 NEXT J
1140 FOR J=41 TO 79 STEP C2
1150 BREAKS$(I+J)=" 0"
1160 NEXT J
1170 PRINT ".":
1180 NEXT I

24

1500 T=C64+C16:S=BREAKS+SCREENWIDTH
1510 FOR I=Cl TO HEIGHT
1520 POKE S,T+Cl
1530 POKE S+Cl,PEEK(S+Cl)+C4
1540 POKE S+WIDTH,PEEK(S+WIDTH)+Cl
1550 POKE S+WIDTH+Cl,T+C4
1560 T=USR(BITXOR,T,C16) :S=S+SCREENWIDTH
1570 NEXT I
1600 T=96+C16:S=BREAKS+Cl:N=HEIGHT*SCREENWIDTH
1610 FOR I=Cl TO WIDTH
1620 POKE S,T+C2
1630 POKE S+SCREENWIDTH,PEEK(S+SCREENWIDTH)+8
1640 POKE S+N,PEEK(S+N)+C2
1650 POKE S+N+SCREENWIDTH,T+8
1660 T=USR(BITXOR,T,C16) :S=S+Cl
1670 NEXT I
1700 POKE BREAKS,C64:POKE BREAKS+WIDTH+Cl,C64
1710 POKE BREAKS+N+SCREENWIDTH,C64:POKE BREAKS+N+SCREENWIDTH+WIDTH+Cl,C64
1900 FOR I=CO TO HEIGHT+Cl
1910 R=I*SCREENWIDTH
1920 FOR J=CO TO WIDTH+Cl
1930 POSITION J,I:PUT #C6,32:POSITION J,I
1940 PUT #C6,ASC(CHSET$(PEEK(BREAKS+R+J)+Cl))
1950 NEXT J:NEXT I
2000 ROW=Cl:COL=Cl
2010 OLDTRIG=Cl:0LDSTICK=C15
2100 R=USR{BITAND,ROW,Cl) :C=USR(BITAND,COL,Cl)
2120 DIR=VERT:CURSOR=ASC{" {RIGHT}") :IF R=C THEN CURSOR=ASC{" {DOWN}") :DIR=HORIZ
2200 POSITION COL,ROW:GET #C6,UNDER
2210 POSITION COL,ROW:PUT #C6,CURSOR
2220 T=STRIG(CO):IF T<>OLDTRIG THEN OLDTRIG=T:IF T=CO THEN 4000
2230 T=STICK{CO):IF T<>C15 THEN 2300
2240 OLDSTICK=T
2250 T=PEEK(764) :IF T<>255 THEN 3000
2260 GOTO 2220
2300 IF T=OLDSTICK AND IDLE>CO THEN IDLE=IDLE-Cl:GOTO 2220
2310 IF T=OLDSTICK AND DELAY>CO THEN DELAY=INT{DELAY/C2) :IDL£=DELAY
2320 IF T<>OLDSTICK THEN DELAY=C4:IDLE=DELAY:OLDSTICK=T
2400 POSITION COL,ROW:PUT #C6,UNDER
2410 ROW=ROW+ROWCHANGE{T):COL=COL+COLCHANGE(T)
2420 IF ROW<CO THEN ROW=HEIGHT
2430 IF ROW>HEIGHT THEN ROW=CO
2440 IF COL<CO THEN COL=WIDTH
2450 IF COL>WIDTH THEN COL=CO
2460 GOTO 2100
3000 POSITION COL,ROW:PUT #C6,UNDER:POSITION CO,CO
3010 T=USR(BITAND,T,63)
3020 IF T=39 OR T=60 THEN POKE 764,28
3030 GET #7,T:IF T>=128 THEN T=T-128
3040 IF T>ASC("a") AND T<=ASC{"z") THEN T=T-ASC("a")+Cl
3110 IF T=ASC("{CLEAR}") THEN 1000
3120 IF T=ASC("Q") THEN 5000
3130 IF T=ASC{"L") THEN 3200
3140 IF T=ASC("S") THEN 3400
3150 GOTO 2200
3200 MISC$="LOAD":GOSUB 3600:IF FILE$="" THEN 2200
3210 TRAP 3300:0PEN #Cl,C4,CO,FILE$
3220 FOR I=CO TO HEIGHT+Cl
3230 R=I*SCREENWIDTH
3240 FOR J=CO TO WIDTH+Cl
3250 POSITION J,I:PUT #C6,32:POSITION J,I
3260 GET #Cl,T:POKE BREAKS+R+J,T:PUT #C6,ASC{CHSET$(T+Cl))
3270 NEXT J:NEXT I
3280 GOTO 3310
3300 POSITION CO,CO:PRINT "CAN'T LOAD FROM "iFILE$:GOTO 3390
3310 POSITION CO,CO:PRINT "DONE."
3390 CLOSE #Cl:FOR T=Cl TO 200:NEXT T:GOSUB 3700:GOTO 2200
3400 MISC$="SAVE":GOSUB 3600:IF FILE$="" THEN 2200
3410 TRAP 3500:0PEN #Cl,8,CO,FILE$
3420 FOR I=CO TO HEIGHT+Cl
3430 R=I*SCREENWIDTH
3440 FOR J=CO TO WIDTH+Cl
3450 POSITION J,I:PUT #C6,32:POSITION J,I
3460 T=PEEK(BREAKS+R+J) :PUT #Cl,T:PUT #C6,ASC(CHSET$(T+Cl))
3470 NEXT J:NEXT I
3480 GOTO 3310
3500 POSITION CO,CO:PRINT "CAN'T SAVE INTO "iFILE$:GOTO 3390
3600 POSITION CO,CO:IF HASDOS=CO THEN 3800

25

3605 T=PEEK(702) POKE 702,C64:PRINT "FILE TO ";MISC$;
3610 INPUT MISC$ POKE 702,T:GOSUB 3700
3620 FILE$=MISC$ IF FILE$="" THEN RETURN
3630 FOR T=Cl TO LEN(FILE$)
3640 IF FILE$(T,T)=":" THEN 3660
3650 NEXT T:FILE$="D:":FILE$(3)=MISC$
3660 FOR T=Cl TO LEN(FILE$)
3670 IF FILE$(T,T)="." THEN RETURN
3680 NEXT T:FILE$(LEN(FILE$)+Cl)=".KNT"
3690 RETURN
3700 POSITION CO,CO:PRINT " {DELETE-CHAR}":RETURN
3800 PRINT "IS CASSETTE READY FOR ";MISC$;"?";
3810 GET #7,T:GOSUB 3700:IF T>=128 THEN T=T-128
3820 FILE$="C:":IF T=ASC("N") OR T=ASC("n") THEN FILE$=""
3830 RETURN
4000 POSITION COL,ROW:PUT #C6,UNDER
4010 POKE 77,CO
4020 M=ROW:N=COL-(DIR=HORIZ)
4030 FOR I=CO TO Cl:R=I+M
4040 FOR J=CO TO Cl:C=J+N
4050 IF C<CO OR R<CO THEN 4100
4060 S=BREAKS+SCREENWIDTH*R+C
4070 CH=USR(BITXOR,PEEK(S),BITS(I+I+J,DIR»:POKE S,CH
4080 POSITION C,R:PUT #C6,ASC(CHSET${CH+Cl»
4100 NEXT J:NEXT I
4110 GOTO 2100
4900 HASDOS=CO
4910 FOR I=CO TO 12
4920 IF PEEK(794+3*I)=ASC("D") THEN HASDOS=Cl
4930 NEXT I:RETURN
5000 PRINT "{CLEAR}":POKE 752,CO:END
8999 END
9100 READ MISC$:IF MISC$="=" THEN RETURN
9110 H=ASC(MISC$(Cl,Cl»-48:IF H>9 THEN H=H-7
9120 L=ASC(MISC$(C2,C2»-48:IF L>9 THEN L=L-7
9130 POKE P,H*C16+L:P=P+C1:GOTO 9100
30000 CO=0:C1=1:C6=6:CHBAS=756:DIM CR$(C1):CR$=CHR$(155):OLDGEN=PEEK(CHBAS):POKE 82,2
30010 GRAPHICS 2:0PEN #7,4,CO,"K:":POKE 752,C1
30020 SETCOLOR CO,8,12:SETCOLOR 3,9,4:SETCOLOR 2,CO,CO
30030 PRINT iC6;CR$;CR$;CR$;CR$;
30040 PRINT #C6;" {12
30050 PRINT iC6;" KNOTWORK
30060 PRINT #C6;" {12
30070 PRINT " COPYRIGHT (C) 1980"
30075 PRINT " THE CODE WORKS"
30080 PRINT "{DOWN} PRESS TO BEGIN."i
30090 GET i7,T:PRINT "{CLEAR}"
30500 P=PEEK(106) :DIM F$(20):F$="D:KNOTWORK.FNT"
30510 A=P*256:C=255-PEEK(A):POKE A,C:IF PEEK(A)=C THEN POKE A,255-C:P=P+C1:GOTO 30510
30520 P=P-5:IF P<PEEK(106) THEN POKE 106,P:GRAPHICS CO:OLDGEN=O
30530 P=P+C1:A=P*256
30540 IF OLDGEN<>P THEN 30600
30550 I=LEN(F$):J=A-I-C1
30560 FOR T=I TO C1 STEP -C1
30570 C=ASC(F$(T»:IF PEEK(J+T)<>C THEN 30600
30580 IF C=ASC(":") THEN 30690
30590 NEXT T
30600 GOSUB 4900:IF HASDOS THEN 30620
30610 F$(l,l)="C":PRINT " {CLEAE}PUT TAPE WITH "iF$:PRINT "IN Cl,SSETTE PLAYER."
30620 TRAP 30700:0PEN ICl,4,CO,F$
30630 PRINT "{CLEARJLOADING "iF$:C=ASC("X"):POKE 752,C1
30640 FOR I=CO TO 1023:GET iC1,J:POKE A+I,J:PRINT CHR$(C)i"{LEFT}"i:C=107-C:NEXT I:

CLOSE iCl:TRAP 50000
30650 I=LEN(F$):J=A-I-Cl
30660 FOR T=I TO Cl STEP -Cl
30670 C=ASC(F$(T»:POKE J+T,C:IF C=ASC(":") THEN 30690
30680 NEXT T
30690 POKE CHBAS,P:CLR :GOTO 100
30700 PRINT "CAN'T LOAD ";F$;": ERROR "iPEEK(195):END

26

7 b

7 6

7 "

How Knotwork Works
The Knotwork program is designed around a set of specially-defined characters; the
characters are pieces of interlace, some with horizontal and vertical lines where
breaks occur. The program uses those characters to make the knotwork pattern,
rather than drawing the pattern with a high-resolution graphics mode. This makes
the program simpler to write because it need only be concerned with printing the
right character at the right time. It doesn't have to worry about erasing unneces-
sary lines, not erasing necessary ones, drawing lines that aren't there, and so forth.
All the drawing and erasing considerations were taken care of when the character
set used in printing was designed. Also, since a text mode is used instead of a
graphics mode, the program takes less memory to run (even counting the space
taken by the character generator).
The code in Knotwork has three main parts: watching the joystick to decide what
should be done; keeping track of where breaks have been placed by the user; and
keeping the picture on the screen accurate.
To help it in its work, Knotwork keeps a "copy" of the screen in an array. "Copy" is
in quotes because it isn't really a replica: rather, it is a table which describes the
breaks, with one item in the table for each character on the screen. When a break
is placed (or removed), the break table is changed first. The picture on the screen
is then changed according to information in the break table.
Each item in the break table has two
types of information in it: some indicators
as to whether there are breaks around 5
that position, and which of eight sets of
characters to choose from for that
position on the screen. 5
To draw the knotwork correctly requires
that a different set of characters be used
in different places on the screen. (The
sets of characters should not be confused
with the character set, or font, that
contains the sets of eharacters.) The sets 5"
are numbered from 0 to 7, and each set
contains sixteen characters. There are
sixteen characters in a set because each
character position mayor may not have a
break on each of the four sides, and
there are sixteen combinations of breaks -J.{--Po-7-+--6w9--7......
and non-breaks. The drawing shows which
set is used where on the screen. The main knotwork pattern draws upon sets 0, 1, 2,
and 3. The top and bottom edges are printed from sets 4 and 5. The left and right
edges are drawn using sets 6 and 7. The corners, which never show up as anything
but blanks, are printed using set 4.
Each item in the break table contains, in the upper four bits of the item, the
number of the set of characters to be used for that position of the pattern.
The break indicators are kept in the low four bits of the item. Bit 0 (=1) tells of a
break at the right; bit 1 (=2) of a break underneath; bit 2 (=4) of a break to the
left; and bit 3 (=8) of a break above.
The set number and break indicators are arranged so that Knotwork can easily
choose, from CHSET$, the exact character to print. It merely PEEKs at the proper
item in the break table, and uses the resulting number as a subscript to CHSET$. No
fancy calculations are needed. (A nice example of arranging the data to make the
program simpler.) (Cotitinuea on page 30)

27

O
N
EO

W
ND

A.
A.
,O

.L
.M
.,
O
.L
.

Th
e
fo
llo
w
in
g

ar
tic
le

is
ba
se
d
on

a
cl
as
s
gi
ve
n
by

M
ar
k
va
n
St
on
e,
a
ca
lli
gr
ap
he
r
w
ho

ha
s
st
ud
ie
d
th
e

or
ig
in
al

m
ed
ie
va
l
m
an
us
cr
ip
ts

to
le
ar
n
th
e

te
ch
ni
qu
es

us
ed

in
th
ei
r
pr
od
uc
tio
n.

Th
e

in
si
gh
ts

he
re
in

pr
es
en
te
d
ar
e.
hi
s.

Th
e
ba
si
s
(o
r
th
is

st
yl
e
of

kn
ot
w
or
k
is
a
gr
id

of
do
ts
,
an
d
th
is

pr
in
ci
pl
e:

K
no
ta
av
oi
d
do
ta
;
br
ea
ks

jo
in

th
..
..

1 2
'

I.
Th
e
D
ot
s

V.
B
re
ak
s

1,
Pu
t
[o
u:

do
ts
at

th
e
co
rn
er
s
of
a
sq
ua
re
.

Th
is
?'l
e
st
yl
e
of

kn
ot
w
or
k
ca
n
ge
t
bo
rin
g
af
te
r

2.
Pu
t
a
do
t
in
th
e
m
id
dl
e
of

th
e
sq
ua
re

an
d
in

a
w
hi
le
,
W
e
ca
n
sp
ic
e
it
up

by
pu
tti
ng

br
ea
ks

in
th
e
m
id
dl
e
of

ea
ch

si
de

of
th
e
sq
ua
re
:

th
e
gr
id
w
or
k
be
fo
re

kn
ot
tin
g
it.

Th
e
ru
le
s:

3
-

3.
Pu
t
a
do
t
in

th
e
ce
nt
er

of
ea
ch
m
la
ll
sq
ua
re
.

A
br
ea
k
is
ho
riz
on
ta
l
or

ve
rt
ic
al
,

di
ag
on
al
.
I

4.
C
on
st
ru
ct
a
ba
nd

of
th
e
m
la
ll
sq
ua
re
s
at

A
br
ea
k
ne
ve
r
cr
os
se
s
an
ot
he
r
br
ea
k.

le
as
t
tw
o
sq
ua
re
s
(th

re
e
do
ts
)
w
id
e.

21
.
/r
aw

a
lin
e
be
tw
ee
n
do
ts

in
fr
an

th
e
ed
ge
.

r-
-:
-"
i-
--
:-
--
t

II
.
Th
e
K
no
t.

22
.
Kn
ot

th
e
st
ra
nd
s
th
er
e
as
if
th
e
br
ea
k
w
er
e

5.
tw
o
lin
es
,
ju
st

in
si
de

th
e
bo
rd
er
s
of
a

an
ed
ge

(a
nd

a
co
rn
er
).

du
un
on
d
of

do
ts
.
Th
e
en
ds

of
th
e
lin
es

sh
ou
ld

23
.
A
pa
tte
rn

of
fw
r
br
ea
ks

m
ak
in
g
a
cr
os
s
w
as

st
op

ju
st

be
yo
nd

th
e
do
ts
.

po
pu
la
r
w
ith

th
e
m
ed
ie
va
lm

on
ks
.

/r
aw

tw
o
lin
es

pe
rp
en
di
cu
la
r
to

th
e
on
es

ju
st

To
ke
ep

yw
r
kn
ot
s
al
l
in

on
e
st
ra
nd
,
le
av
e
at

//
.

dr
aw

n.
Th
e
fir
st

tw
o
lin
es

sh
ou
ld

to
uc
h
th
e

le
as
t
tw
o
do
ts

be
tw
ee
n
su
cc
es
si
ve

br
ea
ks

or
br
ea
k

cl
os
es
t
ne
w
lin
e.

pa
tte
rn
s.

5
7.

/r
aw

an
ot
he
r
st
ra
nd

fr
an

th
e
fir
st
on
e
w
ith

An
y.
ar
ra
ng
em

en
t
of

br
ea
ks

is
ac
ce
pt
ab
le
,
as

lo
ng

tw
o
m
or
e
1in
es
.

'
as
zt
do
es
n'
t
vi
ol
at
e
th
e
ru
le
s.

zs:

V
I.
C
ol
or
in
g

Le
av
e
a
na
rro
w

rim
of

pa
pe
r
sh
ow

in
g
be
tw
ee
n

th
e
co
lo
r
il1
3i
de

th
e
st
ra
nd

an
d
th
e
ed
ge

of
th
e
st
ra
nd
.
Yo
u
m
ay

fu
rt
he
r
ou
tli
ne

th
e
co
lo
r

w
ith

a
th
in

lin
e
of

bl
ac
k
in
k,
if
de
si
re
d.

M
on
ks

ca
rr
no
nl
y
us
ed

se
ve
ra
l
co
lo
rs

in
pa
tte
rm

se
m
i-i
nd
ep
en
de
nt

of
th
e
in
te
rla
ce
.

W
he
n
yo
u
ar
e
do
ne
,
co
lo
r
or

in
k
in
th
e
ba
ck
-

gr
ou
nd
,
to

hi
de

th
e
do
ts
.
(Y
ou

do
n'
t
w
an
t

ot
he
rs
to

kn
ow

ho
w
ea
sy
it
is,
do

yo
u?
)

24
.

25
.

26
.

V
II
.
C
U
rv
ea

27
.
Th
e
on
ly

di
ffe
re
nc
e
be
tw
ee
n
re
ct
an
gu
la
r

in
te
rla
ce

an
d
cu
rv
ed

in
te
rla
ce

is
th
at
th
e

gr
id

of
do
ts

is
de
fo
rm
ed

to
fi
t
th
e
cu
rv
e.

Th
e
ex
am

pl
e
sh
ow

s
ho
w
to
do

"s
qu
ar
e"

gr
id
s

in
si
de

cu
rv
es
.

8.
Ke
ep

go
in
g•
••

9.
C
on
tin
ue

do
w
n
th
e
ce
nt
er

of
th
e
ba
nd

of
.

sq
ua
re
s.
D
ra
w

pa
ra
lle
l
Iin
es

on
ly

w
he
n
al
l

fs
ur

do
ts

su
rr
w
nd
in
g
th
e
st
ra
nd

ap
pe
ar
.

10
.
C
on
si
de
r
th
e
ed
ge
s.

W
ith
ou
t
a
fu
ll
dic
un
on
d
of

.
do
ts
,
th
e
st
ra
nd
s
bo
un
ce

of
f
th
e
ed
ge
•

11
.
Fi
ni
sh

th
e
im
id
e
of
th
e
tu
rn

by
co
nt
in
ui
ng

th
e
lin
es

ar
ou
nd

th
ei
r
do
ts
.
Th
e
st
ra
nd

ha
s

ju
st

m
ad
e
a
90

0
tu
rn
.

12
.
To

en
d
it,

dr
aw

a
lin
e

th
ro
ug
h
th
e
si
de
s
of
a

sm
al
ls
qu
ar
e,
na
t.
th
ro
ug
h
th
e
ce
nt
er
s.

13
.
Fi
ll
al
l
th
e
dic
un
on
ds

w
ith

st
ra
nd
s
(p
ar
al
le
l

lin
es
).

14
.
Ex
te
nd

th
e
un
tie
d
en
ds
to

th
e
ed
ge
s,
an
d

fo
llo
w
th
e
si
de
s
to

th
e
co
rn
er
s.

15
.
Fi
ni
sh

th
e
in
ne
r
si
de

of
th
e
tu
rn
in
g
st
ra
nd
s.

Th
e
st
ra
nd
s
ha
ve

ju
st

m
ad
e
a
18
00

tu
rn
.

II
I.
Th
e
C
om

er
s

16
.
A
ba
nd

tw
o
sq
ua
re
s
w
id
e
ne
ed
s
a
4
sq
ua
re

ar
ea

fo
r
its

co
rn
er
.
Th
e
in
ne
r
ed
ge

11
Us
t

pi
vo
t
ar
ou
nd

a
sq
ua
re
's

co
rn
er
,
no
t
its

m
id
po
in
t.

17
.
C
on
tin
ue

in
te
rla
ce

to
al
l
ed
ge
s.

18
.
It

he
lp
s
to

de
fin
e
th
e

ed
ge
s
by

dr
aw

in
g
a

17
lin
es

ar
ou
nd

th
e
pe
rim

et
er

of
th
e
co
rn
er
.

19
.
Th
e
co
rn
er
's

ou
te
r
ed
ge

w
U
I
ha
ve
a
18
00

tu
rn

in
it;

th
e
in
ne
r
si
de
s
w
ill
be

tw
o
90

0

tu
rn
s.

IV
.
In
cr
ea
in
g
th
e
W
id
th

20
.
Ad
d
an
ot
he
r
ro
w

of
sm

al
l
sq
ua
re
s
to
th
e
gr
id

of
do
ts
.

.y
A
'

CJ

'0
II

\'1
IS-

BITAND
BlTOR

BITXOR
BREAKS

Changing a break requires changing the indicators in the four items surrounding the
break, and reprinting the four characters on the screen that surround the break.

=== Arrays ===

BITS() Tells which bit to change when setting breaks under various conditions.
COLCHANGEO

Tells how much to change the column number of the arrow for various
joystick positions.

ROWCHANGE()
Like COLCHANGE(), but for the row number.

=== Variables ===
Contains the address of the bitwise-And USR() function.
Contains the address of the bitwise-Or USRO function. (BlTOR actually
isn't used in Knotwork. It was included originally because it might have
been.)
Contains the address of the bitwise-Exclusive-Or USR() function.
Holds the address of the break table. Most changes to the table are
made using POKEs. To POKE the right place in the table, we have to
know where the table starts.

BREAKS$ The break table itself. Except in setting up, the break table is referred
to through POKEs using BREAKS (above).

BREAKSSIZE
The size of the break table.

C

CH
CODE$
COL
CURSOR
DELAY
DIR
FILE$
H
HASOOS
HEIGHT
I
IDLE
J

L
M

Holds some number related to the column number of the cursor. Exactly
what it is changes from place to place.
Holds the new break-table entry while changing a break.
Holds the actual machine code for the USR() functions.
Tells which column in the knotwork rectangle the arrow is in.
Holds the arrow being used for the cursor. It may be one of two arrows.
Tells how long Knotwork should delay before responding to the joystick.
Tells which direction (horizontal or vertical) the break should go.
Holds the file name for loading or saving a pattern.
Used in setting up the code for the USRO function.
Notes whether there's a disk available on this particular Atari computer.
Controls the height of the rectangle containing the knotwork,
Used for many purposes, but usually with FOR loops.
The counter used to delay response to joystick movements.
Another variable of many uses. Also mainly FOR loops.
Used in setting up machine code for the USR() function.
Holds the row number of the upper-left corner of the square of four
characters surrounding the break to be changed.

30

MISC$ As its name implies, MISC$ has no fixed use. It is used anywhere some
string is needed, but which isn't important enough to warrant permanent
space of its own.

N Holds the column number of the upper-left corner of the square of four
characters surrounding the break to be changed.

OLDSTICK Tells where the joystick pointed last time we looked at it.
OLIYI'RIG Tells whether the joystick trigger (button) was pressed or not last time

we looked at it.
P
R

Cnnn

VERT

WIIJfH

Points into the CODE$ string while setting up the USR() function.
Holds a number related to the row number of the arrow. How it's related
varies from place to place.
Tells which row the arrow is in, in the knotwork rectangle.
Points into the break table while setting up the "bare canvas" of the
knotwork rectangle, and while changing the break table.
Used for many things, in many places.
Remembers what was on the screen where the cursor was put (what's
under the cursor).
Controls how wide the knotwork rectangle is.
=== Constants ===
Anything named C followed by a number holds that number. Those
variables are used to save space in the program.

CHSET$ Holds all eight sets of sixteen characters.
HORIZ One of the two directions breaks can be.
SCREENWIIJfH

The total width of the Atari's screen, in characters.
The other of the two directions breaks can be.

ROW
S

T
UNDER

===== The Program =====
100-110

Set up various constants for later use.
120 Choose how big the knotwork rectangle is to be.
136 Go see if there are disks attached.
200 Figure out how much roan we'll need for the break table.
210-220

Allocate all our arrays and strings.
230 Since the break table is going to be referred to mostly with POKEs, find out

where it starts.
300-330

Set up- the USR() functions, and remember their addresses.

340-390
The machine code for the USR() functions. In assembler, they are:

FRO = $D4
BITAND: BITOR: BITXOR:
PLA PLA PLA jThrow away # of args
PLA PLA PLA jGet high byte of 1st arg
STA FRO+l STA FRO+1 STA FRO+l ;save it
PLA PLA PLA ;Get low byte of 1st arg
STA FRO STA FRO STA FRO ;save it, too
PLA PLA PLA jGet high byte of 2nd arg
AND FRO+l ORA FRO+l EOR FRO+l jdiddle it
STA FRO+l STA FRO+l STA FRO+l jand save resull
PLA PLA PLA jGet low byte of 2nd arg
AND FRO ORA FRO EOR FRO jdiddle it, too
STA FRO STA FRO STA FRO jand save the result
RTS RTS RTS JAIl done, so return

As you can see, the only difference between the three functions is the
instruction used to do the actual bit twiddling. Everything else is identical.

410-440
Set up the tables of how the arrow should move for the various joystick
positions.

800-835
Set up the eight sets of sixteen characters for later use in printing knotwork
patterns.

850-880
Set up the table of which bits in the break table to change for various breaks
being changed.

900 Clear the screen, turn off the cursor, remove the left margin, and put the
knotwork font in effect.

910 Make the screen blank.
{CLEAR} - Set up a blank knotwork canvas

1000 Say that it'll take a short while to do.
1100-1180

Set up the basic pattern for the knotwork rectangle. The basic pattern is made
out of four-character squares, selecting the first four character sets. Line
1120 sets up the characters that should be printed with sets 0 and 1. Line
1150 sets up the characters that should be printed with sets 2 and 3. No
breaks are set anywhere. A dot is printed occasionally to reassure the user
that all is well.
Add the initial breaks around the edges

1500 The characters along the left and right edges are selected from character sets
4 and 5. T holds the current character set number. Make S point to ... the first
visible row of the rectangle (below the top edge).

1510-1570
For each row of the rectangle, put a break Into the left and right edges of
the rectangle. Also, mark that character as using one of sets 4 and 5. After
doing the marking, switch the set used to the other of 4 or 5, for next time
around the loop. Also, advance S to point to the next row in the rectangle.

32

1600 The characters along the top and bottom edges are printed using sets 6 and 7.
Make T hold the first set (of 6 and 7) to use, and make S point to the first
visible column of the rectangle. N holds the distance from the top to the
bottom of the rectangle (just to save a little calculation in the loop).

1610-1670
For each column of the rectangle, put a break at the top and bottom edges of
the column. Mark each edge as using one of sets 6 and 7 when printing the
characters on the screen. Then, switch T to the other set of 6 and 7, for the
next time around the loop. Also advance S to the next column of the
rectangle.

1700-1710
Make the four corners of the rectangle all print using character set 4.
Print the initial rectangle on the screen.

1900 For each row of the rectangle•••
1910 Find the start of the row in the break table.
1920 For each column in the row•••
1930 Put the cursor at the right row and column on the screen, and print a blank.

(There may already be a pattern on the screen. We print a blank moving across
the pattern to show that something is happening, even if the pattern isn't
changing.) Move the cursor back to the right row and column again. (Alas, we
can't just print a backspace. When you are printing to S:, backspaces are
ordinary characters, and don't move the cursor baekwards.)

1940 Print the proper character from the proper character set onto the screen. The
break table has been arranged so that the number obtained by PEEKing at a
spot in the break table is the number of the character to print from CHSET$.
No computations have to be done other than adding one to account for strings
starting at character 1 instead of O.

1950 Continue with the next column or row (whichever is appropriate).
2000 Start out at the upper-left corner of the rectangle.
2010 Assume that the joystick button isn't pressed, and that the joystick isn't

pushed.
The Main Loop - look at all the controls and do What's needed

2100 Determine which character in the four-character square we are over.
2120 From that, figure out which way the arrow should point (and which way the

break it points to goes).
2200 Remember what is obliterated by the arrow.
2210 Put the arrow up on the screen.
2220 Look at the joystick trigger. If it's moved since we saw it last, remember the

new position. If the new position is pressed, go change a break.
2230 Look at the joystick itself. If it isn't upright, go move the arrow.
2240 Remember that it's upright now.
2250 See if there's a key pressed. If so, go do what it says.
2260 Nothing needed to be done. Go make the rounds again.

33

Move the arrow
2300 If the joystick is in the same position as it was last time around, kill some

time before responding.
2310 Time to respond. If the joystick is in the same position as it was before, cut

down the delay for next time.
2320 If the joystick moved since last time, put the delay back at maximum.
2400 Put back what was erased by the arrow.
2410-2460

Move the arrow's position, but make sure it stays within bounds. Then go off
and put the arrow back on the screen in its new position.
See what key was pressed

3000 Put back what was erased by the arrow. (In this case, it tells that we've seen
the keypress.)

3010 Strip off the SHIFf and crRL bits from the keycode.
3020 If the key pressed is {RVS} or {CAPS}, change it to {ESC}, so we can ignore it

noisily. (It's reassuring to hear the click when a key is pressed, even if the
key is ig nored.)

3030 Get the code for the key. If it's in reverse video (black on white),
change it to normal white-on-black.

3040 If the key is "a lower case key, change it to upper case.
3110-3150

If the key is one of {CLEAR}, {Q}, {L}, or {S}, do the appropriate thing.
Otherwise, ignore it.
L - Load a pattern

3200 Go off and ask for a file name. If no name is given, don't bother trying to
load; he's changed his mind.

3210 If anything goes wrong while loading, go to line 3300. Open the file he
wanted read.

3220-3270
Read in the pattern, one character at a time. While we're reading it in, move
a blank across the pattern to show how far we've gone. In the wake of the
blank we put the new pattern.

3280 All is well. The pattern was loaded without problems. Close the file, and go
back to the main loop.

3300-3310
Something went wrong. Tell him so. Give him time to read the message, and
then erase it, to keep the screen tidy. Close the file, since it's of no use to
us. Go back to the main loop.
S - Save a pattern

3400 Go ask what file to put the pattern into. If he doesn't say, assume he didn't
want to save anything after all.

3410 If anything goes wrong during the save, go to line 3500. Open the file to
save the pattern into.

34

3420-3470
Copy the pattern into the file. While we're doing that, move a blank across
the pattern to show how far we've gone.

3480 All done. Close the file, and go back to the main loop.
3500 It didn't work. Say so, and wait till he's had time to read the message. Erase

the message, close the file (since we can't use it any more), and return to the
main loop. (Everything after printing the message is actually done in line 3310.
It was all listed here to keep the description straighforward.)
Get a file name to load from or save to

3600 Put whatever message is printed at the top of the screen. If we're dealing
with cassette (no DOS, therefore no disk), go be nice to cassette people.

3605 "Press" the {CAPS} button, but remember what it was before. Print our
question.

3610 Get his reply, and restore the caps-lock to whatever it was before. Erase the
question (and reply).

3620 If he gave no name for a file, forget about doing anything.
3630-3650

If no colon (and therefore no device) was given, assume "D:".
3660-3680

If no period (and therefore no extender) was given, assume ".KNT' to keep
knotwork patterns separate fran other files.

3690 We now have a legal file name. Hand it back.
3700 Erase the top line of the screen for someone,
3800 Alas, he has only a cassette recorder. Ask if it's set up for whatever it's

needed for.
3810 Get the reply (of one key), and erase the question.
3820 If he says "Y" (or anything except ''N'') , hand back a file name of "C:". (This

routine was called to get a file name, after all.) Otherwise, hand back no name
at all, to say that things aren't ready.

3830 We're done, so go back to wherever we came fran.
Change a break

4000 Put back what was erased by the arrow.
4010 Turn off Attract Mode.
4020 Since a break is surrounded by a four-character square, figure out where the

upper-left corner of the square is.
4030-4100

For each of the four characters in the square: If the character is outside the
rectangle, ignore it completely. Find the character's position in the break
table, and flip the appropriate bit for that break in that position. Go to the
proper place on the screen, and print the character required to display the
newly changed break.

4110 Now that we're done, go back to the main loop.

35

See if there's a DOS (and a disk) on this Atari
4900 Assume that there's no disk.
4910-4930

Search the Atari's device table for a device named "D:". If there is one,
assume it is a disk, and remember that there's a disk available. Once we've
found out about the disk, return whence we came.
Q - Quit (leave the program)

5000 Clear the screen, turn the normal cursor back on, and give control back to the
user.
Read hexadeeimal data into a string (for machine code)

9100 Read one byte of data. If it's an equals-sign, we're done.
9110 Pick off the upper half of the byte, and change it to a number from a to 15.
9120 Do the same with the lower half.
9130 Combine the halves, and stow the result into wherever it belongs. Advance the

store pointer, and go back for more.

Hacker's Delight
A Compendium of Genuinely Useful Memory Locations
A favorite pastime among hackers is to figure out exactly how the operating system
(or OS) uses all the memory it keeps to itself. The usual result of such
investigations is a memory map which tells in great detail what the OS does with
each byte. What any of those bytes are to the programmer is rarely explained.
This map is different: it is in no way complete, but any location mentioned is
explained in detail. It tells both what information is kept, and how you can put it
to use. As such, the many loeatiqns which are of use to no one but the OS are
ignored completely.

The first thing given for each location is the Official Atari Narne for that location.
We are using those names because they are a standard set of names, already in
public use. (We see no reason to promote confusion by using names different from
those Atari is using, even if we'd prefer different names here and there.)
Irrmediately after the name will be the memory address, first in decimal, then in
hexadecimal. If the name is for a multi-byte quantity, the range of addresses will be
given. Except where otherwise stated, the low-order byte is at the low-numbered
address. After the address will be a description of the location, with hints,
examples, and caveats. (Some of these locations have to be used with a little care.)

This map has two parts: First is a list of locations" in alphabetical order by name,
with the addresses in decimal, and a very brief description of each location. Second
is a list in order by address, with detailed expositions on the locations. The first
list can be considered both a summary, and an index into the second list.

Since all the names below are names of memory locations, I will often talk of
settini XXXX to something. What I mean is to POKE XXXX with the something,
rather than assigning the something to XXXX. Similarly, if I speak of XXXX holding
something, or being equal to something, I'm referring to PEEK(XXXX), not XXXX
itself.

36

Some locations which are useful won't be described below because they require more
explanation than can be given in a paragraph (usually because they control
something b.ii:, with a need to set things up before you flip the switch).

The odd spelling of the various Atari names is due to the fact that the assembler
they use for their software development can't take names longer than six characters.

In general, a single-byte location can be meddled with using PEEK and POKE
directly. For example:

WIIJrH = PEEK(RMARGN)-PEEK(LMARGN)+l
PRINT "Error number n;PEEK(ERRSAV)
POKE COLCRS,12
POKE SHFLOK,PEEK(KEYCODE)-60

'IWo-byte locations are more awkward, as you have to put the number together
yourself (for PEEKs), or break it in half (for POKEs). For example,

SCREEN=PEEK(SAVMSC)+256*p EEK(SAVMSC+1)
PRINT "Error at line n;PEEK(STOPLN)+PEEK(S1OPLN+l)*256
CENTER=192
POKE COLCRS,ASC(CIffi.$(CENTER»
POKE COLCRS+l,INT(CENTER/256)
HI=INT(CENTER/256):LOW=CENTER-256*HI
POKE COLCRS,LOW:POKE COLCRS+l,HI

The POKE examples show two different ways to carving the number to be POKEd
into two pieces. Both use INT(xxx/256) to get the upper half of the number. To get
the lower half, the examples use two different methods. The first uses a trick:
CIffi.$() will take any (non-negative) number and use the remainder after dividing by
256. The ASC() then retrieves the remainder. The second example calculates the
remainder directly.
(A note: in general, on the 6502, two byte numbers are stored with the low order
byte in the lower numbered address, and the high order byte in the higher address.)
In the descriptions below, it is assumed that variables have been defined for any
names that are used as memory addresses. If, when you use the names yourself, no
values have been given to the names, nothing will work as you expect. All you need
are a series of lines like this:

R'f(;LOK=18:ATRACI'=77:ERRSAV=195:INVFLG=694
containing those names you're using in the program. Any locations you aren't using
you can ignore completely.

The Locations by Name

ATRACf

CHACf

COLCRS
CRSINH

77 Attract mode timer and flag. <128:off, >=128:on. On after 9 mins,
755 Character mode. Bit O=Blank RVS; Bit I=Normal RVS; Bit 2=Flip char.
85 Cursor column number. Two bytes in GR.8.
752 Cursor inhibit. =O:visible, <>O:invisible

37

DSPFLG 766 Control-char display. =O:act, <>O:show
ERRSAV 195 Number of last 1RAPped Basic error.
FILDAT 765 Color number for FILL (XIO 18)
FRO 212 Floating Register O. Holds value for USR(). Is page zero RAM.
INVFLG 694 Reverse-video-input flag. =O:normal, =128:reverse, othersdon't use
KEYCODE 764 Last pressed key. Not Atascti, =255:no key. Reset by GET, INPUT.
LMARGN 82 Left screen margin, 0-39. Used only w/ GR.O and text window.
RAMTOP 106 Size of memory in 256-byte pages. Do GR.O after changing.
RMARGN 83 Right screen margin, 0-39, >LMARGN. Used only w/ GR.O, text window.
ROWCRS 84 Cursor row number.
RTCLOK 18 Clock. PEEK(18) is slow, PEEK(20) is fast. Ticks every 60th sec.
SAVMSC 88 Address of upper-left corner of screen in memory.
SDLST 560 Address of start of screen display list.
SHFLOK 702 Caps-lock flag. =O:lowercase, =64:uppercase, =128:ctrl chars
SOUNDR 65 Noisy I/O flag. =O:silent, <>O:noisy. Not a volume ctrl,
SlOPLN 186 Number of line causing last 1RAPped Basic error.
TABMAP 675 Bit map of tab stops, one bit per column.
TXTC'.()L 657 Text window cursor column number.
TX'IROW 656 Text window cursor row number.

The Locations by Address

RTCLOK (18-20, $12-$14) Holds the Atari's clock. It is updated every sixtieth of a
second (a unit hereby christened a ttek), Every sixtieth of a second, the
Atari adds one to location 20. If the sum exceeds 255 (Which is the Iarg est
number that can be held in one byte), location 20 is set back to zero, and
location 19 gets one added to it. If location 19 exceeds 255, it is set to
zero, and one gets added to location 18. If location 18 exceeds 255, that's
the end of the line. Location 18 gets set to zero, and gets one
added. Notice that, unlike the usual arrangement of numbers on the 5502,
the low bits of the clock are in the high byte of the number.
The main use of RTCLOK is, as you might expect, to time things. For
example, to see how long a particular FOR loop takes to run, you might do
th e following:
100 RTCLOK=18:REM Tell Basic where the clock is
110 REM First, set the clock to zero.
120 FOR I=RTCLOK to RTCLOK+2:POKE I,O:NEXT I
190 REM Next, do your FOR loop
200 FOR 1=0 TO 39
210 POSITION I,O:PRINT "X"
220 NEXT I
290 REM Finally, get the elapsed time back.
300 N=O:FOR I=RTCLOK TO RTCLOK+2:N=N*256+PEEK(I):NEXT I
310 PRINT "Loop took ";N;" ticks, or ";N/60;" seconds."
320 END

38

R'ICLOK can be used to put delays into programs as well, but it is awkward
enough to use that FOR loops (FOR 1=1 TO 1000:NEXT I) are probably a
better technique.

SOUNDR (65, $41) SOUNDR lets you control whether or not sound comes out of your
1V's speaker while the Atari is doing I/O to some device. If you type

POKE SOUNDR,0
the Atari will do its work silently. If you poke SOUNDR with anything else
except zero, the Atari will make noise while doing I/O. In practice, I find
that it is usually better to leave SOUNDR non-zero, and use the volume
control. However, there are some applications in which the I/O noise is a
nuisance, and ought be gotten rid of. SOUNDR allows you to do that. Note
that SOUNDR is not a volume control; it is just an on/off switch.

ATRACf (77, $4D) In the short history of video games, it has been found that if you
leave the same plcture on a T{ screen too long, the picture gets "burned"
onto the screen. A burned-in picture has the unfortunate characteristic that
it is visible (even when the 1V is off). The Atari people, being
reasonably knowledgeable about video games, programmed their computer to
avoid burned-in oictures, If you leave the Atari alone for about nine
minutes, it will enter what Atarl Attract ;/lode. In Attract Mode,
everything on the screen changes color every so often. This protects the
phosphors (Which cover the front of the picture tube, and glow to make the
picture) frcxn being overused and wearing out (the cause of burn-in).
There are two ways to turn off Attract Mode. One is to press a key on the
keyboard. (Pressing a button, like {SfART}, won't do.) The problem with this
is that it requires the help of the person using the program. Also,
pressing a key will do. Fiddling with the joystick doesn't count. The other
way to turn off Attract Mode is to POKE ATRACf with zero. This can be
done in the privacy of your own program, and requires no help from anyone.
Also, it can be done at any time. Be aware that POKEing ATRACT with
zero doesn't shut off Attract Mode permanently. Nine minutes after the
POKE, (assuming no keys are pressed) Attract Mode will go back on, unless
you prevent it by POKEing a zero again before nine minutes go by.
A simple way to insure that Attract Mode stays off is to do the POKE
whenever the user directs something to be done. For example, when he
pushes the joystick, your program detects that, does whatever is to be
done, and POKEs ATRACf with zero. That way, if he has actually walked
away from the computer, Attract Mode will go on as usual, protecting the
screen. As soon as he returns and does something, Attract Mode goes off
again, leaving the screen in its original colors.
Should you, for some reason, want to turn Attract Mode on, you can do so
by POKEing ATRACf with 128.

LMARGN (82, $52) and
RMARGN (83, $53) LMARGN and RMARGN control the left and right margins of the

screen. The marg ins are just the blank areas to either side of the text on
the screen. The numbers stored in LMARGN and RMARGN are the column
numbers of where the text starts and ends on the screen. (The columns are
numbered starting at zero, so column zero is the leftmost column, and
column 39 is the rightmost columns) The margins do D21. control scrolling;
they just control where the text goes on the screen. When any scrolling

39

occurs, everything on the screen moves at once, be it inside or outside the
margins. (Text can be printed outside the margins with the aid of the
POSITION statements)
The {DELETE LINE} and {INSERT LINE} keys are also affected by the
margins. {DELETE LINE} and {INSERT LINE} always delete or insert
40-character chunks, which start at the left margin, and wrap around the
edge of the screen back to the left margin again. The right margin is
ignored completely.
When the margins are changed, the amount of text you can type in per
logical line is changed. A logical line is always three (or fewer) physical
lines, however long (or short) those physical lines may be. Moving the
margins changes the length of the physical line.
Finally, changing the margins affects only the screen (not the printer), and
then only in graphics mode 0, or in a text window.

ROWCRS (84, $54) and
COLCRS (85-86, $55-$56) ROWCRS and COLCRS together specify the position of the

cursor on the screen. As might be surmised, ROWCRS tells which row the
cursor is in, and COLCRS tells the column. Of the two, COLCRS is the more
useful. You can fake a TAB() function (which Atari Basic doesn't have) by
POKEing the desired column number into COLCRS before doing your
printing. (Remember that the Atari counts columns starting at zero.) If you
want to change both the row and column of the cursor at the same time,
you POKE both ROWCRS and COlICRS, but using POSITION is both
easier and clearer. However, if you want to find out where the cursor .is.,
you have no alternative to PEEKing at R.OWCRS and caLCRS, since the
information isn't available any other way.
Be aware that, when you're in any graphics mode other than 0, ROWCRS
and COLCRS tell the position of the cursor, not the text cursor.
(Because of this, POSITION, LOCATE, and PLar all use the graphics cursor
in modes 1 through 11, since they all change ROWCRS and COLCRS to do
their work.) For modes 1 through 11, you have to POKE TX1ROW and

to move the text cursor. Also, in graphics mode 8, COLCRS is a
two-byte number, since the column number can be greater than 255. To
change (or find out) the column number, both bytes must be POKEd (or
PEEKed). (The second byte is at COLCRS+l.) In any other mode, COLCRS is
one byte long, and COLCRS+l can be ignored.

SAVMSC (88-89, $58-$59) SAVMSC points to the start of screen memory itself, not to
the display list. It is not often useful, as POSITION, Pl.O'F, and LOCATE fill
most possible needs. Occasionally, however, need arises to get something on
the screen without letting the Atari fiddle with it in any way. You can
bypass the Atari by POKEing to the screen directly:

SAVMSC = 88
SCREEN = PEEK(SAVl\1SC)+256*PEEK(SAVMSC+l)
FOR 1=0 TO 959
POKE SCREEN+I,O
NEXT I

Note that what you POKE to the screen does NOf use the ATASCII code.
RAM'IOP (106, $6A) RAMTOP holds the size of memory, measured in 256-{)yte "pages".

If you change the number stored here, you will change how much memory

40

the Atari thinks it has. Theoretically, the Atari won't use any memory that
it doesn't think it has. Why would I want to change the size of memory,
you ask? Occasionally, especially when you play with ANTIC and CfIA (the
Official Atari Names for the parts of the Video Wizardry chips), you need
to grab chunks of memory that won't be in the way of anything, and which
will stay around for a while. The easiest way to grab the memory you need
is to tell the Atari that memory isn't as big as it used to be, and use the
excess yourself. (Fontedit does that to hold the character g enerator.)
To reserve memory, PEEK at RAM10P to find out how much memory the
Atari has, subtract how much you need (plus some extra memory: see below),
and POKE the result back into RAMlOP. Then, right after the POKE, do a
GRAPHICS statement, even if you stay in the same mode. The screen memory
is normally kept in the high end of memory, right where the memory you
want is. In any conflicts in memory use, the Atari will win. The GRAPHICS
statement removes the conflict by forcing the Atari to move screen memory
to before the (new) end of memory. It is thus removed from the memory you
want for yourself.
If every program you run needs a little private memory, you'll eventually
run 011t of memory. Each program that runs will gnaw away at memory,
since the memory grabbed is never returned, There are two solutions: either
the program can return the memory when it's done with it (remember to
give another GRAPHICS commandl), or a program that grabs memory can
grab it starting at the real end of memory, instead of starting at where
the Atari thinks memory ends. It's simple to find out where memory really
ends:
100 RAM1OP=106
1000 SIZE=PEEK(RAMTOP)
1010 ADDR=SIZE*256:T=255-PEEK(ADDR):POKE ADDR,T
1020 IF PEEK(ADDR)=T THEN SIZE=SIZE+1:POKE ADDR,255-T:GOro 1010
1030 REM SIZE now holds actual size of memory.
Briefly, what happens up there is this: We find out how big the Atari
thinks memory is. Next, we see if we can change the first byte beyond the
edge. If we can, we change it back again, increase our i-lea of the memory
size by one page, and go back and try again. Once we hit a place where
we can't make the change stick, we've run out of usable memory, and we
know how big memory is.
One I1!!U2L thing to keep in mind: that "theoretically" up there in the first
paragraph. In practice, the Atari doesn't always confine its meddlings to
below RAMIDP. When that pa-t of the OS which clears the screen and does
the scrolling was written, the people who wrote it made the assumption that
the screen memory would always be the very last thing in memory. Working
under that assumption, they took shortcuts in the code that oughtn't have
been taken. As a result, when you clear the screen (using {CLEAR}), 64
bytes of memory immediately following the screen memory are cleared in
addition to the screen. If you're going to use memory after the screen, you
can either never clear the screen, or not use those 64 bytes immediately
following the screen memory. Similar, but WOI se, is scrolling of a text
window. When text is scrolled, 24 lines of text are moved, even though
there are only 4 lines of text in the window. The other 20 lines (800
bytes!) are taken from the memory beyond the screen mernoryt),
Needless to say, that sort of treatment does not do good things to what
you're storing there. Again, your choices are to never scroll a text window

41

(tricky, but not very hard), or to not use those 800 bytes of memory. Faced
with those choices, I've chosen to not use the 64 bytes, in the first case,
and not scroll the text window, in the second. When I'm grabbing memory, I
just grab an extra page, and waste most (or all) of it.

SfOPLN (186-187, $BA-$BB) This location holds the line number of the line in which
a '!RAPped error occurred. It is only changed when an error is '!RAPped. It
can be printed out (along with the error number, see ERRSAV), or it can be
tested ("did it foul up in line 43 again?"), or it can be used in a aaro.
The last is not recanmended, as it leads to opaque programs, but it Ia
legal.

ERRSAV (195, $C3) This location holds the number of the error that caused the
'!RAP to be tripped. As with STOPLN, it is set by the Atari only when a
'!RAPped error occurs. The number stored in ERRSAV is identical to the
nwnber that would have been printed in an error message without a '!RAP.

FRO (212-217, $D4-$D9) FRO is one of the "floating point registers" used by the
Atari to do non-integer arithmetic in. It concerns the programmer mainly in
how it relates to the USR() function. When a USR() function that is
expected to return a result is called, it puts the result into the first two
bytes of FRO just before it returns. All six bytes are available for use by a
machine-language program, as long as no floating point arithmetic is done
by anyone. (Basic does nothing but floating point, so FRO can't be used for
storage of numbers between calls to the USR() functlon.) Note that FRO is
in Page Zero, with all that that implies. (For those not in the know, Page
Zero is special when you're working in machine language. Using it can make
your machine code smaller and faster.)

SDLST (560-561, $230-$231) The name SDLST was fashioned after Atari's names for
the two bytes (SDLSTL and SDLSTH). They name each byte separately, while
I see no need for more than one name. SDLST holds the address of the
screen display list. The display list is a powerful thing to know about, and
cannot be gone into here; I haven't the room. As this location is looked at
every tick of the clock, you have to be very careful when changing it. If
you don't take care, it will be looked at in a half-changed state.
(Basically, you have to turn off one of the Atari's interrupts to be sare.)
See Hacker's Delight in Iridis 1 for information on display lists.

TX'IROW (656, $290), and
TXTCOL (657, $291) TX'IROW and TXTCOL are analogous to ROWCRS and COLCRS, in

that they tell the row and column of a cursor. However, TX'IROW and
TXTCOL control the text cursor in a text window, whereas ROWCRS and
COLCRS control the graphics cursor (or the text cursor in GRAPHICS 0). To
move the cursor in a text window, you have no choice but to POI{E TX1ROW
and TXTCX>L, because POSITION, PLOf, and LOCATE refer to the graphics
cursor. Except for the change in names, everything described for ROWCRS
and COLCRS applies to TX'IROW and TXTCOL.

TABMAP (675-689, $2A3-$2B1) TABMAP records where the tab stops are set on the
screen. Each column on the screen has one bit in the table corresponding
to it. (The table can therefore hold 15(bytes)x8(bits/byte)=120 tab stops.) If
the bit for a column is on (1), a tab stop has been set at that column. If
the bit is off (0), there's no tab stop. The most straightforward way to
alter TABMAP is to use the {SET-TAB} and {CLEAR-TAB} characters. Space
over to the column you want a tab set or cleared at. Then press {SET-TAB}
or {CLEAR-TAB}, whichever Is appropriate. (This can be done with PRINT
statements just as easily.)

42

Some things are more easily done by diddling TABMAP directly, such as
clearing all. the tab stops. To do that, just POKE zero into all fifteen
bytes of TABMAP• After the tabs are cleared, you can set new ones
wherever you like, using {SET TAB}. Naturally, by POKEing in things other
than zero, you can set up any combination of tab stops you like. For
example,

FOR I=TABMAP TO TABMAP+14:POI{E 1,17:NEXT I
will set tabs at columns 4, 8, 12, 16, etc. across the screen (and clear any
other tabs that may have been set).

FOR I=TABMAP TO TABMAP+14:POKE 1,1:NEXT I
will restore the tabs to their original settings of columns 8, 16, 24, 32,
etc.
When altering tab stops, keep in mind that tabs work with log:jcal lines, not
physical lines, and that a logical line can span up to three physical lines.
Thus, if all logical lines on the screen were two physical lines long, with a
tab set only at column 23, successive {TAB}s would place the cursor on
every other physical line. The skipped physical lines would be those that
held columns 41 through 80 of the logical lines. In practice, tab stops past
column 40 are useful only if you know ahead of time how long the logical
lines will be.

INVFLG (694, $2B6) INVFLG is unusual in that it has no effect on the display. It
affects only what is typed on the keyboard. INVFLG tells whether what's
being typed is in reverse video (black-on-white) or not. If you POKE a
number greater than 127 into INVFLG, anything typed will be in reverse
video (black-on-white). If you POKE in 127 or less, things will stay in the
normal, white-on-black style. POKEing INVFLG lets a program press the
{RVS} key itself, without human intervention. If you change Il\TVFLG yourself,
remember that pressing {RVS} will change it, too. The exact behavior of
INVFLG is this: after a keypress is converted to ATAOCII, INVFLG is
Exclusive-Or'd with the ATASCII code, and the result is handed off to the
program that wanted input. Because of this, any numbers other than 0 and
128 in INVFLG will cause rather odd things to happen.

SHFLOK (702, $2BE) SIIFLOK is like INVFLG, in that it has no effect on the display.
It, too, affects only what's being typed. SHFLOK corresponds to the {CAPS}
key, and tells what kind of case lock is in effect. If SHFLOK is 64, {CAPS}
was last pressed, and all letters are capitals-only. If SHFLOK is 0, {LOWR}
was pressed, and all letters come in as lower case. If SHFLOK is 128,
{CTRL}{CAPS} was pressed, and all letters come in as {CTRL}-whatever,
resulting in the funny characters. You can POKE whatever you like into
SHFLOK, thereby "pressing" whichever variant of {CAPS} you want. For
example, to force typing in all caps (until {CAPS} is pressed in some form),
POKE SHFLOK with 64. SHFLOK is used by the Atari while changing the
keycode to the Atascii code. Partway through the conversion, if the key is
an unshifted alphabetic key (i,e, 'a' through 'z"), SHFLOK is Log ical-Olted
into the keycode, and the resulting code is sent back through the
conversion process. Normally, ORing in SHFLOK produces a control code or
some such thing, which either isn't unshifted, or isn't between 'a' and 'z ',
However, the keycodes are arranged such that if SHFLOK is between 1 and
63, ORing it with an unshifted letter keycode will produce another
unshifted letter keycode. That keycode will in turn have SHFLOK applied,
(producing the same code this time) and the Atari will go back through the
conversion. Since the code will never change ag ain, and it will always be
an unshifted letter, the Atari will never finish converting the code to

43

Ataseii, As a result, it will appear to "hang" (as we computer folk say), and
won't respond to anything but RESET. Putting other numbers into SHFLOK
will break the loop because the keycode will cease being unshifted after
the first time around, and SHFLOK applies only to unshifted keys. The net
result of all this is that you shouldn't POKE anything but 0, 64, or 128
into SHFLOK, as nothing useful results.

CRSINH (752, $2FO) CRSINH controls whether or not the cursor is visible on the
screen. If CRSINH is 0, the cursor is visible. If it is anything but zero (1,
for example), the cursor is not visible. Keep in mind that the ONLY thing
that CRSINH controls is whether the cursor is visible. The screen will still
scroll if the cursor goes past the lower-right corner of the screen, even
if the cursor is invisible. An invisible cursor moves in exactly the same way
as a visible one. The main use for CRSINH is with images that get changed
a lot; they look much better if there isn't an ugly white square wandering
about the screen.

CHAcr (755, $2F3) CHACT controls the display of reverse video (i,e, any character
whose ASC() is 128 or greater), and also one other thing. CHACf is divided
up into separate bits, each on which controls one things. Bit 0 (which
equals 1), if on, makes any reverse video character appear on the screen to
be a blank. (This isn't necessarily invisible, as a blank can be either dark
(when whit e-on-black), or bright (when black-on-white). Bit 1 (Which equals
1), if on, makes reverse video characters come out as black-on-white. If it's
off, they cane out as white-on-black, so they look just like any other
characters. The combined effect of bits 0 and 1 are summarized as follows:
POKE CHACf,O makes everything print as white-on-black. POKE CHACf,1
makes reverse video invisible. POKE CHACf,2 makes reverse video print as
black-on-white. POKE CHACf,3 makes reverse video print a; solid white
blocks. When you turn on the Atari, it sets CRACf to 2. (Try the following
program:

90 CHACT=755
100 PRINT "BLINKING TEXT'
110 POKE CHAcr,INT(RND(1)*4)
120 FOR 1=1 TO 100:NEXT I
130 GOTO 100

Type the underlined text in reverse video. Make sure you POKE CHACf back
to 2 when you're done.)
Bit 2 (which equals 4) does something of no general use: when it's on, all
printing comes out upside down. As I said, not very useful, but it is
eyecatching.
One unobvious use for CHACf is to make text blink. By changing the
number stored in CHACf at regular intervals, you can make reverse video
text blink any way you like. The above program is a nice, albeit useless,
example.

KEYCODE (764, $2FC) KEYCODE is an invented name, to replace the Atari name of
ClL CH is much too likely to be used as a real variable to make it a good
name for a memory location. KEYCODE holds the keycode (DQt. the ATASCII
code) for the key last pressed. (That is, as long as the key Isn't {BREAK},
{CfRL}, or {SHIFf}. {BREAK} won't show up in KEYCODE ever, and {CfRL}
and {SHIFf} won't show up by themselves.) If no key has been pressed since
the last time an INPUT or a GET was done, KEYCODE holds 255. Whene\T.er a
GET or an INPUT is done, the keycode is picked out of KEYCODE and

44

converted to ATASCII. KEYCODE itself gets 255 stuffed into it. (If
KEYCODE is 255 when the GET or INPUf is done, the Atari waits around
until a key is pressed to do somethings)
The number in KEYCODE actually is more than the code for the pressed
key. It also tells if {SHIFT} or {CTRL} was pressed with the key. If bit 7
(which is 128) is on, {CTRL} was pressed with the key. If bit 6 (which is 64)
is on, {SHIFT} was pressed with the key. Naturally, both {SHIff} and {CTRL}
may have been pressed at once. In that case, both bits 6 and 7 are on at
once. The other six bits (bit 0 through 5) hold the actual code for the key
pressed. There's no particular order in the keycodes. That's no problem, as
there are only two keys you're ever likely to need the codes for: {RVS} and
{CAPS}. More on that later.
You can watch KEYCODE to make a program that keeps running until a key
is pressed. Were you to do a GET to watch the keyboard, everything would
grind to a halt until the user pressed a key. By watching KEYCODE
instead, the program can keep doing things. Once KEYCODE stops being
255, the program can do a GET to find out what key was pressed. Or, if
you don't care which key was pressed, just POKE 255 into KEYCODE.
One problem with that method is that the {RVS} and {CAPS} keys stop
KEYCODE from being 255. However, they aren't enough to satify a GET. The
GET will wait till some CYfHER key is pressed. To avoid the wait, you've got
to avoid doing the GET if the key pressed was either {RVS} or {CAPS}. The
simplest test is to take the keycode from KEYCODE, and subtract 64
repeatedly until the code is 63 or less. (That removes the {SHIFf} and
{CTRL} bits.) If the resulting code is 39, {RVS} was pressed. If it is 60,
{CAPS} was pressed. In either case, you can either throw them away
completely (POKE KEYCODE,255 and skip the GET), use them to change
INVFLG and SHFLOK yourself (POKE INVFLG, 128-PEEK(INVFLG) for {RVS},
and POKE SHFLOK, PEEK(KEYCODE)-60 for {CAPS}), or change the KEYCODE
to something else so that the GET will return without a wait (POKE
KEYCODE,28 is handy; that makes GET return the {ESC} key). You can do
some combination of the above, as well, such as handle SHFLOK, but throw
away the keypress.

FILDAT (765, $2FD) Controls the color of an area which is FILLed (XIO 18). FILL is
similar to DRAWTO in that both FILL and DRAW10 cause a line to be drawn
from one place to another. The difference between a FILL and a DRAW1D
is that the FILL fills the area to the right of the drawn line with (possibly
another) color. Also, doing a FILL is more complicated that doing a
DRAWTO.
To do a DRAWTO, you'd need to execute

COLOR code : Pl.Of oldx, oldy : DRAWro newx, newy
is the color number (llQi the color register number) for the color of

line you want. Qh1x. and are the starting position for the line. (The
Pl.Of isn't needed if you want to draw a line from the last position you
were at.) Finally, the DRAWTO draws the line to the new position.
To do a FILL, you would have to do the following:

COLOR codel : PLOf oldx, oldy : POSITION newx, newy
POKE FILDAT, code2 : XIO 18,#6,0,0,"8:" : PLaf newx, newy

Codel is the color number for the line to be drawn. The PLOf sets the

45

starting position for the drawn line, as it does with DRAWlO. (Again, if you
want to draw from the last place you were, you can omit the PLar.) Next,
you POSITION the cursor to the other end of the line. POSITION doesn't
draw the line, it just tells where the line will go. Next, POKE FILDAT with
the color number for the color to FILL the area to the right of the line
with. Then do the XIO, as written. The line will be drawn and the area
filled with color. Finally, the last Pl.Ol' is needed to position the cursor
properly, as there is a bug in FILL which leaves the cursor in the wrong
place.
One more note on FILL: when you do a FILL, the IOCB (or I/O channel) is
left write-only. In other words, you can't do a LOCATE to read the screen
after you do a FILL using channel #6. The solution is to use some other
channel to do the FILL with. For example, you can write

XIO 18, #7, 0, 0, "8:"
to do the FILL using channel #7 instead of #6. (Naturally, you shouldn't
use a channel you're already using for something else.)

DSPFLG (766, $2FE) DSPFLG determines how screen function characters (such as
{CLEAR} or {UP}) are handled. Usually, they are obeyed (by clearing the
screen, or moving the cursor, or something). You can force them all to be
displayed as the corresponding symbols by POKEing DSPFLG with 1 (or
anything other than zero). To allow the function characters to do things
ag ain, POKE a zero into DSPFLG.

Page 6 (1536-1791, $600-$6FF) This is a page (256 bytes) of memory which Atari
solemnly swears that they will never use for any purpose whatsoever. As
such, it is guaranteed to be forever available to any program that wants to
keep things in it. It can be used to hold tables, machine code,
player-missle bit maps, betting odds, stock prices, pork belly futures, or
whatever you like.

Loadfont
If you are going to write programs using private fonts, you need a way to insure
that your font is loaded. The Loadfont subroutine provides just such a way. It
checks to see what font, if any, is loaded. If it isn't the one you want, it proceeds
to load yours. (Knotwork uses a variant of Loadfont to make sure that the Knotwork
font is Ioaded.)
To use Loadfont, put it in as lines 30500-30700 of your program. Change the
assignment to F$ (in line 30500) to the name of your font (leave the D: in the
string there). Finally, add a GOSUB 30500 as the first thing done in your program.
That's all that has to be done.
Loadfont is written to be entirely self-contained, even to dimensioning the string. If
you want to change variable names (especially the string) to names more in keeping
with your style of naming things, feel free. Also, it can be moved to a different
range of lines without problems. Just make sure you get the GO'IO's and WEN's
renumbered properly. Also, Loadfont must always be run before you put anything on
the screen of any value, because it changes the graphics mode of the screen while
loading the font.
There are two simple ways to make Loadfont part of a program. The first way is to
load Loadfont before you start typing in your program, and just write your program
around it. The other is to keep Loadf ont in text form (using LIST to a file), and

46

ENTER it when you discover you need it. ENTER's behavior is easy to explain: it
makes Basic think that you are typing in statements, even though the stuff is really
coming from a file.
An example will help make things clear: You have written a program to serve as a
canvas for doing knotwork (sound familiar?) and you need to make sure that the font
you created for it (using Fontedit, of course) is loaded into memory before anything
else is done. You think, "That's Why they wrote Loadfont!", Having LISTed it to your
disk (or cassette, as the case may be) beforehand, you type

ENTER"D:LOADFONT'
Next, "FANCY" in line 30500 gets changed to KNaIWORK. (.FNT stays, because that
marks it as a Iont.) Next, line 90 (GOSUB 30500) is added, your program having
started at line 100. Finally, you save the modified copy of your program. (If you
don't, Murphy's Law decrees that you'll forget to completely, and have to do all
that ag aln.) The final result of all that work is the following:

90 GOSUB 30500
100 REM The Great, Glorious Knotwork program starts here
110 REM Written by PHILANDER C. KNOX

(The Knotwork program itself)

9999
30500

END
P=PEEK(106):DIM F$(20):F$="D:KNaIWORK.FNT'

(The Loadfont routine)

30700 RETURN
The example assumes that you have a disk. If you don't, just change "D:" to "C:";
everything else stays the same.

Loadfont Listing
30500 P=PEEK(106) :DIM F$(20):F$="D:FANCY.FNT"
30510 A=P*256:C=255-PEEK(A):POKE A,C:IF PEEK(A)=C THEN POKE A,255-C:P=P+l:GOTO 30510
30520 P=P-5:IF P<PEEK(106) THEN POKE 0
30530 P=P+l:A=P*256
30540 IF PEEK(756)<>P THEN 30600
30550 I=LEN(F$):J=A-I-l
30560 FOR T=I TO 1 STEP -1
30570 C=ASC(F$(T» :IF PEEK(J+T)<>C THEN 30600
30580 IF C=ASC(":") THEN 30700
30590 NEXT T:GOTO 30700
30600 TRAP 30610:0PEN #1,4,0,F$:GOTO 30630
30610 IF PEEK(195)=130 AND F$(l,l)="D" THEN PRINT "PUT TAPE WITH ":F$:" INTO CASSETTE.":

F$(l,l)="C":GOTO 30600
30620 PRINT "CAN'T FIND ":F$:".":END
30630 TRAP 30650:PRINT "{CLEAR}LOADING ":F$:C=ASC("X"):POKE 752,1
30640 FOR 1=0 TO 1023:GET #l,J:POKE A+I,J:PRINT CHR$(C):"{LEFT}"::C=107-C:NEXT I:

CLOSE #l:GOTO 30660
30650 GRAPHICS O:PRINT "CAN'T LOAD COMPLETE FONT.":POKE A-l,O:END
30660I=LEN(F$):J=A-I-l
30670 FOR T=I TO 1 STEP -1
30680 C=ASC(F$(T»:POKE J+T,C:IF C=ASC(":") THEN 30700
30690 NEXT T
30700 POKE 756,P:RETURN

47

Loadfont is concerned first, with making roan for the character generator, and
second, with loading the font into the generator.

=== Variables ===
All the variable names are short to cut down on the size of the code, and to
make it more likely that they're reused by the program calling Loadfont,
Also, many of the variables in Loadfont are reused whenever possible, again to
keep it small and inconspicuous. The ones described below are those variables
with specific uses.

A Contains the address of the real end-of-memory.
F$ The name of the file that the font is stored in.
P Holds the size of memory, in pages.

=== The Program ===
Find (or make) room for the font to load

30500 Reserve room for the name of the file that the font is kept in, and put the
name in it. Find out where the Atari thinks memory ends.

30510 See if memory really ends there. We do so by seeing what's there, and
putting something else in its place. If, when we look again, what we put
there is still there, we haven't found the end of memory. Put the old value
back, and check one page farther' on.

30520 We've found the real end of memory. Make sure that we get the last five
pages of it, by blocking the Atari out of it if need be. (We do that by
moving where the Atari thinks the end of memory is to before the memory we
want ourselves.) The GRAPHICS 0 is to make sure that the screen memory isn't
in the memory we want.

30530 Establish where the new character generator starts.
Load the font into the character generator

30540 There may already be a font loaded into our generator. If not, go directly to
where we load the one we want.

30550-30590
There is a font already loaded. See if it's the one we need. We can tell
because the font name is stored in memory just before the start of the font
itself. We just compare the name of the loaded font with the name of the
font we want. If they're the same, we have nothing to do. If not, we must
load the font we need.

30600 Open the file that the font is stored in. If it's there, go read it in.
30610 It wasn't there. If that's because we wanted it on disk, and there was no

disk, try to get it from cassette.
30620 No dice. Complain, then stop.
30630-30640

C.opy in the font. If all is well, we'll have no problems. While we're copying,
we print something that shows that we're hard at work. When we're done,
store the font name to show what's been loaded.

30650 Alas, we can't read in the whole font. Since we need it to do anything,
complain and go away. Before going away, make sure that no one else will
think a font is loaded, by wiping out part of the name of the loaded font.

48

30660-30690
Store the name of the newly loaded font just before the font itself.
Everything fran the colon on is saved. (The colon is saved to remove
confusion between similar names. Without the colon, FIN.FNT might be thought
to be loaded when ELFIN.FNT was. With it, :FIN.FNT can't be confused with
:ELFIN.FNT.)

30700 Make the Atari use our font, and return to whoever called us.

Oddments
ODDMENTS is the repository for all the facts, fancies, and rumors that don't warrant
an article of their own. We encourage contributions, and will acknowledge anything
we see fit to use. Here's your chance to see your name in print.

e
e

One of the Atari's nifty features is the four-voice sound. When you use it, be
careful what sort of I/O you do. If you talk to anything that hangs off the serial
bus, the sound registers will be turned off. This happens because part of the
circuitry that makes the sound is also used to run the serial bus. After you do any
I/O, you'll have to reset the sound registers to what you want. In practice, I/O and
sound aren't used together often, so it's not a big problem. Also, I/O to the screen
and the keyboard have no effect on the sound registers. It's something you should
be aware of, just in case. (One less mysterious bug to track down with days of
sweat.)

After you execute a 1RAP statement, the next error to occur sends you to the
stated line number. The pitfall with that is that the 'mAP remains in effect even
after the program stops running. Should you give a canmand that is in error (trying
to load a nonexistent file because of a mistype, for example), Basic will obediently
restart your program at the appropriate line. This can cause rather odd effects at
times. Also, unless the program prints out the error number, you can't find out what
the error was. The only solution we know of is to turn off any TRAP after you're
done with it (with 'mAP 50000), and especially right before an END statement.

One of our readers (Steve Steinberg of Reston, Va.) sent in a different chime for
the CLOCK program in Iridis 1. Unfortunately, it won't work well with CLOCK itself,
since CLOCK can't afford to spend time in delay loops; it has to be constantly
updating the screen to keep the second hand moving. However, the chime does sound
nice. Here it is:

100 FOR Z=12 TO 1 SI'EP -1
110 SOUND 0,10,2,Z
120 FOR W=l TO 40:NEXT W
130 NEXT Z
140 FOR W=l TO 600:NEXT W
150 aaro 100

In Iridis 1, we described something that the Atari does as "Glitch Mode". We have
since found out that the official name for that is "Attract Mode". We have also
found out * it's called Attract Mode, since it clearly won't attract people to the
Atari, Way back when, before Atari began making computers, they were making video

49

arcade games. Arcade games, to make money, have to attract people to play them.
Therefore, they were made with two "modes": and attract. Since the arcade
games spent 9096 of their time in attract mode (or so we are told), the attract mode
pictures would get ''burned in" on the screen if nothing were done to prevent it.
"Burn-in" occurs when the phosphors on the screen get over-used, and wear out.
(The phosphors are the part of the picture tube that glow, and make an image by
glowing .) So, attract mode did various and sundry things to preserve the phosphors.
With the advent of the color video arcade game, the phosphor problem became more
complicated: there were three different phosphors (for red, green, and blue) on the
screen, and all three had to be kept intact. Atari chose to solve the problem by
switching colors every so often. The color-switching function later became known
within Atari as the "attract function", since it was associated with the arcade game
attract mode. The original concept, of attracting people, ceased being the central
idea. When the Atari computer was made, it, too, incorporated a color-shifting
function to keep the phosphors working. By analogy with the arcade games, the
mode in which the Atari did color shifting was called "Attract Mode", since it
perfonned the "attract function". _e_

e

An update on the Saga of the Break Key: As you recall from the last Iridis, we
mentioned in passing that the Break Key isn't all that it could be. Ideally, Break
would cause an error just like all the other errors. In particular, if you had a '!RAP
statement in effect, pressing Break would cause Basic to go off to the line named
in the mAP. This would allow better user-proofing of programs, as well as providing
for a "cancel that last canmand! I've changed my mind!" type of thing. In the
absense of the ideal, the next best thing would be to be able to make the Atari
ignore the Break key entirely. That way, pressing Break wouldn't cause any harm,
even if it didn't do any good. As it stands, pressing Break kills the program,
leaving its affairs in a rather disordered state. (Basic itself is still in fine shape;
it's just your program that isn't well.)
Since the last Iridis, we've come across a possible method for making the Atari
ignore the Break key. (Still no way to '!RAP it, though.) Location 16 in memory
controls, among other things, the BREAK KEY INTERRUPT. If bit 7 of that location
is set to zero, the Atari won't recognize that Break has been pressed. (Meddling
with the other bits does odd things, so we don't recommend playing with it unless
you know the rules of the game.) So far, we've been able to disable Break, but the
problem is that it doesn't disabled. Somewhere in the guts of the Atari is a
piece of code that says, in effect, "Gee, someone turned off Break. That won't do
at all. I'll turn it back on." We don't know how, When, or why that piece of code is
called upon to do its duty. So, as things stand, there's a way to turn off Break,
but only temporarily, and for an unknown amount of time. It is not yet information
that is generally useful.

As you know, the Atari computer has nine graphics modes available to it, numbered 0
through 8. What you may not know is that it also has graphics modes 9, 10, and 11.
That is, the as knows about those modes. The hardware doesn't, and therein lies a
tale. It seems that when the Atari computer was due to be released, Atari hadn't
gotten all the bugs out of their super video chip (the arIA), so they put out the
machine with an "impoverished" version, called the CfIA. (You can't do things much
fancier than Star Raiders. Would that other computers could be so impoverished!)
However, the people who wrote the as assumed that the arIA would be available,
since Atari had told them that it would be. Thus, the software can support things
that the hardware can't do.

50

We have reason to believe that, in the time since the Atari computer was unleashed
on the world, Atari has made the arIA work. The arIA is what you need to make
graphics modes 9, 10, and 11 work. All three modes give you 80 dots horizontally
(each a half-character wide) by 192 dots vertically (160 with a text window). Mode 9
allows one color on the screen, in sixteen different brightnesses. Mode 10 allows
nine different color/brightness canbinations, controlled by nine color registers. Mode
11 lets you have sixteen different colors, all of the same brightness. Again, modes 9
through 11 do Nor work on the Atari canputer as is. You need a arIA.
At present, Atari hasn't decided what to do with the arIA. There are rumors
(repeat, .r.Y!Il.Q.[§) that they're going to drop it in favor of a still m powerful chip,
yet to be described. Other rumors say that the European version of the Atari is
being sold with a arIA. (The video chips had to be redesigned to work with the PAL
system, and it's as easy to redesign the fancy version as the plain one. Or so the
rumors go.) We suggest that you just remain patient for now. More information about
the arIA and how to get one will be available eventually, and we'll print it as soon
as we get it. Until then, find out what the crIA has to offer. We can assure you
that the stand-in chip you have in your Atari can do wonderous things, the likes of
which you won't see anywhere else. It will be a while before you need anything
more powerful.

A nasty bug in string handling in Atari's Basic has surfaced. When the length
of the string being copied is a multiple of 256 bytes long (i,e, 256, 512, 768, 1024,
etc.), the correct number of bytes are copied, but they are copied to a place 256
bytes beyond the place where they should go. For example, assume that A$ is
dimensioned to 256 characters, and B$ to 512. Then, B$=A$(1,256) will copy
A$(1,256) into B$(257,512), IlQ.t B$(1,256). However, B$'s length will be 256. The
apparent effect is that the assignment didn't get done. still is this:
A$=B$(1,256). As before, B$(1,256) will get copied into A$(257,512). However, in this
case, A$ is only 256 bytes long. Therefore, the copied string will overwrite whatever
it is that follows A$ in memory. That will produce some mystifying effects.
Sometimes. Other times, nothing visible will happen.
What makes this bug truly insidious is that you rarely know ahead of time how long
the strings you're copying will be. It's rather difficult to work around the bug
under those circumstances. You can, of course, always use strings of 255 bytes or
less. (Most people do, in fact. That's Why the bug didn't show up for a whiles)
However, that throws away one of the nice features of Atari Basic strings: they can
be extremely long. Alas! They just don't write interpreters like they used to.

The Oracle
We have felt for some time that we ought to have a place where you can send your
questions about the Atari computer, Since we didn't trust just anyone to answer your
questions, we undertook a long and arduous quest in search of exactly the person
we needed. We are happy to report that the quest was successful. Our pleas have
been heard by the Oracle of Atari, He (or perhaps she - the Oracle is
secretive) has consented to answer inquiries from our readers. (Naturally, being an
Oracle, she (net) dtsdaios mere employment by canpany, be it us or Ateri.)

The first question comes from Steve Steinberg from Reston, ve, His question: "I
know that you translate Microsoft Basic's II'lPUf A(X) into Atari Basic INPUI'
T:A(X)=T. But how do you translate INPUf A(X),A(Y)? Also, how do you translate
INPUf A$(X),A$(Y)?"

51

The Oracle's response: The translation for your second INPUT can be divined by
methods closely allied to those you used for the first INPUT. The correct translation
for INPUf A(X),A(Y) is

INPUT ri.ra : A(X)=T1 : A(Y)=T2
You must use as many variables as you have array elements, and then do all the
assignments afterwards.
I grieve to report that there is no direct translation of the string INPUI', for Atari
Basic has no such thing as arrays of strings. You will have to rewrite the program
so that it doesn't need them.

Richard Auclair of San Diego asks: ''How do you use the GET statement? I'm told
there is one, but every time I try to use it, I get errors."
The Oracle's response: Your problem is that you are neglecting to OPEN a file for
the keyboard before attempting the GET. (A canmon error, as the need for the
OPEN is obvious only to those who have been using computers for milleniums, as I
have.) What you should do is:

OPEN #7, 0, 0, ''K:''
The two zeroes are mystic symbols; they must be there, but in themselves they have
no effect. The 7 is made an alias for the keyboard, another name by which you may
irwoke it. The "K:" is the name of the keyboard.
Later, when you wish to read a single keypush, you must write

GET #7, T
The 7 is the alias set up by the OPEN. The ATASCII code for the key pressed is
put into the variable T. (Naturally, as the name for the thing is less important than
the thing itself, any name may be used in a GET. You need not confine yourself to
using T.)
Be aware that some keys cannot be bound by the GET statement: GET will never
return a code for {RVS}, {CAPS}, {CTRL}l, {CTRL}3, or {BREAK}. The keys {RVS},
{CAPS}, and {CTRL}l will slip through the clutches of the GET. {CTRL}3 and {BREAK}
will defeat GET entirely: {CTRL}3 causes an error (number 136, which may be
mAPped); {BREAK} causes the program to cease execution completely.

Novice Notes
Bit patterns, It's enough to make a grown-up frown, or at least yawn. What could
be more boring and less useful than bit patterns? After all, the Atari is a well-
designed Home Computer, right? And we all know that Joe and Sally Six-Pak
shouldn't need to deal with nasty technical details like patterns of bits in a
computer. And neither do you, most of the time. The Atari has a fine operating
system, and a nice version of Basic. The folks that designed the system tried
pretty hard to hide the jagged edges of computers from you. They almost
succeeded, too! There are high-level statements or operating system calls for most
everything you'll ever want to do with the machine. But there is a limit to how
much a moderately priced computer system can provide, since there is only so much
room in the ROlVls. I'm sure there were features that they would really have liked
to put in, but there wasn't space. My guess is that in the future we'll see a
completely new 16I{ Basic from MicroSoft for the Atari, Maybe we'll get lucky and
be blessed with a good high-level language such as Pascal too!

52

As good as the Atari system is, there are still many things the hardware can do
that the current software doesn't support at a high level. As a result, you'll need
to know a little about bit patterns if you want to do some of the advanced stuff
that can be done with an Atari, (A bit pattern is just a collection of ones and
zeros.) Please don't misunderstands we'd very much like to be able to ignore these
details ourselves. Someday, computers will be much more powerful and also much
easier to use than they are now. In the meantime, if you want to get everything
out of a computer you have to be willing to learn more about the technical details
than you might wish.

A simple example of something that can't be done without a little knowledge of bit
patterns is the way that you change how reverse-video text is displayed. (Reverse-
video is when the text is black-on-white instead of the normal white-on-black.) As
we discussed on page 44, you can change the way that reverse video is displayed,
but to do so you have to POKE location 755 with a value from 0 to 3. There are
quite a few other hardware features that you can control by POKEing certain
locations with the appropriate bit pattern. This is especially true of the video
chips. But before we can go much further with this topic, we need to define a few
terms.

You probably already have a pretty good idea of what the PEEK and POKE
statements in Atari Basic do: PEEK tells you the value stored at a given place in
memory, POKE is the opposite of PEEK: it puts a new value at a specific memory
location. For example, you might type:

PRINT PEEK(755)

which will print the contents of location 755 as a number. If you want to dink
around, here's a tiny lttle program that makes it easy to see what is stored at
various places in memory:

100 PRINT "WHICH LOCATION? ";:INPUT LOC
110 PRINT PEEK(LOC);" {ESC}"; CIffi$(PEEK(LOC»
120 aaro 100

(The reason we print an ESC character rig ht before we print the character value
with CHR$ is that a few of the Atari's charcters have special meanings (for
example, the keys that you use for editing the screen) as well as representing.
printable graphic characters. As you recall, the way to make these special
characters "behave" is to print an ESC character in front of them. The trick is
that it is OK to print an ESC in front of all the other characters too, since it
doesn't affect theml)

And just what Is a "location in memory"? Well, the memory of all computers is
divided into a bunch of pieces. Each piece is called a "memory location", and has a
unique number associated with it that is called its "address". You might imagine a
very long street with houses all along it. When you first enter the street the very
first house has a street address of "0", the next has the address "1", and so forth.
On your Atari, at the far end of the street the very last house would have the
address 65,535. This means that your Atari (which uses a microprocessor chip called
the "6502") is able to talk to over 65,000 different memory locations.

Now we know how many memory locations are possible in an Atari, (Remember
though, that the designers of the Atari decided that you can only plug in 48K of

53

RAM memory.) What is stored at each of these memory locations is something called
a "byte". (Actually, the location is also called a byte.) And what is a "byte"?
Well, byte is a term that seems to have originated somewhere in IBM when the IBM
System 360 was designed back in the early 1960s. It is used to refer to a
collection of eight bits. A given location in the memory of your Atari holds one
byte, which is a collection of eight bits.

And what is a bit? It is a binary digit, which is either "1" or "0". (This seems to
goes on and on: every definition requires another term that also needs definition!)
"Binary" refers to a number system that uses a base of two. We devote an
entire Novice Notes article to explaining various number systems. This isn't It.)
Binary is convenient for computer hardware, as digital electronic logic typically can
represent two states "ON" and "OFF".)

When you read our Hacker's article in this issue you'll notice that we often
need to talk about specific bits within a byte. By convention, the rightmost bit
(also called the "least significant" bit) is number zero, and the leftmost or "most
significant" bit is number seven. Here is a picture that also shows the decimal
value of each bit in a byte:

Bit number: 7 6 5 4 3 2 1 o
Decimal value: 128 64 32 16 8 4 2 1

Here are a few examples that show bit patterns and their decimal equivalents.
Please realize that we are only trying to illustrate The Big Idea. If we made this
table complete there would be 256 different patterns below.

Bit Pattern: Decimal value;

0000 0001 1

0000 0010 2

0000 0011 3 (2+1)

0000 0100 4

0000 0101 5 (4+1)

0000 0110 6 (4+2)

0000 0111 7 (4+2+1)

0000 1000 8

0000 1001 9 (8+1)

0000 1010 10 (8+2)

54

Bit Pattern: Decimal value;

0001 0000 16

0001 0010 18 (16+2)

0110 0000 96 (64+32)

1000 0011 130 (128+2+1)

0000 1111 15 (8+4+2+1)

1111 0000 240 (128+64+32+16)

1111 1111 255 (128+64+32+16+8+4+2+1)

As you can see, it isn't very difficult to figure out the decimal value that
represents a desired bit pattern. First, you decide which bits you want to change,
and then look at our table above to find the decimal values for those bits. For
example, if we want to make bit 6 a "1", we look at the table and find that bit 6
has the decimal value 64. But that's too easy! Let's say we want to put a "1 If in
bits 6 and 3. We look in the table and see that bit 6 has the value 64 and bit 3
has the value 8. We add 64 and 8 and find that our value for the POKE statement
is 72.

Sad to say, there is trouble in paradise. Quite often you will want to flip certain
bits in a given memory location while leaving the other bits undisturbed.
Unfortunately, Atari 8K Basic doesn't have a way to do this. For bit-twiddling, you
really need functions in Basic that do "bitwise" operations, especially logical OR and
logical AND. If you have two 8-bit values, when you "OR" them together the result
will have a "1" in any bit position where either of the two original values had a
"1". For example, when we OR together the bit pattern 00000001 with the pattern
00000100 the resulting pattern will be 00000101.

The AND operation puts a "1" in those bits that are "1" in both of the patterns fed
into it. For example, if we AND together the values 11110000 and 11000000 the
result will be 11000000, since bits 6 and 7 are "1" in both of the values we ANDed
together.

What to do? Well, the only answer is unpleasant indeed. We have to resort to
machine language, and write those missing routines ourselves. Guess what? You've
come to the right place! We provide the missing routines in the Knotwork program
in this IRIDIS. The routines are listed in the DATA statements in lines 340 through
390. The routine that READs those DATA statements and stuffs the values away is
at lines 9100 through 9130 of Knotwork.

Once the machine code is stored, we can use those functions with the USR function
in Basic. An example of using the bitwise AND is shown at line 2100 of Knotwork
where the variable R is assigned the bit pattern that results from ANDing together
the row and the value 1.

55

About IRIDIS Listings
Our notation for program listings is based on two rules: anything underlined is
reverse video, and anything in braces is special. Anything else is just what is
appears to be.
Special characters in braces come in two flavors: single characters or words. Single
letters or punctuation marks represent control characters (the ones you get when
you press a key while holding the CrRL key down). For example, in IRIDIS listings,
{C} is CrRL-C, and {,I is CrRL-comma (which prints the "heart" symbol). A word
within braces is the name for a key. For example, {CLEAR} means the key labelled
"CLEAR". A number before a letter or a word tells how many times to press the
indicated key. For example, PRINT "{CLEAR 10 DOWN}HI THERE" will clear the
screen, go down 10 lines, and print "HI THERE". To type that in, you would refer to
the table below, which says that {CLEAR} is entered by pressing ESC followed by
the CLEAR key. "10 DOWN" means the sequence of ESC followed by CURSOR-DOWN
(or CrRL-equals), repeated ten times.
When we actually want to print a down-arrow, and not do a cursor-down, our listings
will show PRINT "{ESC IX>WH}". Using the table, we see that {ESC} means "press
the ESC key twice", and {DOWN} means "press ESC, and then press cursor-down
(etrl-equals)", Put these together, and you will press ESC times, and then
press cursor-down.

Atari: Us: You type: Atari: Us: You type:

1= {A} ctrl-A ., { , } ctrl-cornma
{B} ctrl-B T { .} ctrl-period

= {C} ctrl-C { ; } ctrl-semicolon
{D} ctrl-D .Ii {BACK} ESC BACK-
{E} ctrl-E r--"I {BELL} ESC ctrl-2-:I {F} ctrl-F {CLEAR} ESC shift-less
{G} ctrl-G {CLR TAB} ESC ctrl-TAB=={H} ctrl-H 5:.5 {DEL CHAR} ESC ctrl-BACK

!! {I} ctrl-I =--:: {DEL LINE} ESC shift-BACK5..5
{J} ctrl-J * {DO\"lN} ESC ctrl-equals

== {K} ctrl-K {ESC} ESC ESC-== {L} ctrl-L {INS CHAR} ESC ctrl-greater
{M} ctr {INS LINE} ESC shift-greater
{N} ctrl-N ":. {LEFT} ESC ctrl-plus

- {OJ ctrl-O - {RIGHT} ESC ctrl-star
{p} ctrl-P =-= {SET TAB} ESC shift-TAB- ={Q} ctrl-Q {TAB} ESC TAB
{R} ctrl-R - {UP} ESC ctrl-minus
{S} ctrl-S ---- Note

- {T} ctrl-T comma is
- {u} ctrl-U equals is

{V} ctrl-V greater is >
{w} ctrl-vv less is <

_.. {X} ctrl-X minus is
{Y} ctrl-Y period is

_.. plus is +...- {Z} ctrl-Z semicolon is ;
star is *

56

